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Abstract

This paper proposes tools for robust inference for difference-in-differences and event-
study designs. Instead of requiring that the parallel trends assumption holds exactly,
we impose that pre-treatment violations of parallel trends (“pre-trends”) are informative
about the possible post-treatment violations of parallel trends. Such restrictions allow
us to formalize the intuition behind the common practice of testing for pre-existing
trends while avoiding issues related to pre-testing. The causal effect of interest is
partially identified under such restrictions. We introduce two approaches that guarantee
uniformly valid (“honest”) inference under the imposed restrictions, and we derive novel
results showing that they have good power properties in our context. We recommend
that researchers conduct sensitivity analyses to show what conclusions can be drawn
under various restrictions on the possible differences in trends.
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1 Introduction

When using difference-in-differences and related methods, applied researchers are often un-
sure whether the needed parallel trends assumption holds in practice. It is therefore common
to assess the plausibility of the parallel trends assumption by testing for pre-treatment dif-
ferences in trends (“pre-trends”). There are concerns, however, that such tests may have low
power (Freyaldenhoven, Hansen and Shapiro, 2019; Roth, 2019; Kahn-Lang and Lang, 2020;
Bilinski and Hatfield, 2020), and relying on them further introduces statistical issues from
pre-testing (Roth, 2019). This paper introduces an alternative approach to causal inference
in settings where parallel trends may be violated. Our approach formalizes the intuition
motivating tests of pre-trends while avoiding the limitations described above.

We consider a setting in which the researcher estimates a vector of “event-study” coeffi-
cients β̂ “ pβ̂1pre, β̂1postq P R¯

T`T̄ , where β̂pre and β̂post respectively correspond with estimates

for
¯
T pre-treatment periods and T̄ post-treatment periods. The parameter β “ E

”

β̂
ı

can
be decomposed as

β “

˜

0

τpost

¸

loooomoooon

:“ τ

`

˜

δpre

δpost

¸

loooomoooon

:“ δ

, (1)

where τ is a causal parameter of interest (assumed to be 0 in the pre-treatment period) and δ
is a bias from a difference in trends. For instance, in the canonical (non-staggered) difference-
in-differences framework, τ is the vector of period-specific average treatment effects on the
treated (ATT) for some policy of interest, and δ is the difference in trends of untreated
potential outcomes between the treated and comparison groups. The usual parallel trends
assumption is that δpost “ 0, which gives point identification of τpost. Researchers frequently
test the plausibility of this assumption by testing whether δpre “ 0 (a “pre-trends” test).

Instead of imposing that parallel trends holds exactly, we place restrictions on the possible
values of the post-treatment difference in trends δpost given the (identified) value of the pre-
trend δpre. Such restrictions formalize the intuition motivating pre-trends tests, namely that
pre-trends are informative about counterfactual post-treatment differences in trends. More
formally, we impose that δ P ∆ for some researcher-specified set ∆ and show that the causal
parameter τpost is partially identified under such restrictions.

We show that a variety of commonly expressed intuitions about possible violations of
parallel trends can be captured via different choices of the set ∆. For example, applied
researchers often have the intuition that any differences in trends evolve smoothly over time
(e.g. owing to long-run secular trends), which can be formalized by restricting how quickly
the slope of the differential trend can change over time. Likewise, our framework allows
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researchers to formalize the intuition that the magnitude of the violation of parallel trends
in the post-treatment period cannot be too much larger than the worst-case violation over
the pre-treatment periods. We adopt a flexible framework that allows researchers to capture
these intuitions, as well as a variety of other restrictions that are implied by context-specific
knowledge about the possible confounds.

We then introduce methods that provide uniformly valid (“honest”) inference for the
treatment effect of interest under the restriction that δ P ∆. Our approach to inference can
be applied whenever ∆ can be written as the finite union of polyhedra, which incorporates all
of the restrictions described above and many others. Specifically, we introduce two methods
for inference with different attractive features depending on the exact form of ∆ considered.

We first consider inference based on optimal fixed length confidence intervals (FLCIs)
(Donoho, 1994), which have desirable finite-sample guarantees for particular ∆s of interest.
Results from Armstrong and Kolesar (2018a,b) imply that FLCIs have near-optimal expected
length among honest procedures when the class ∆ is convex and centrosymmetric, as is the
case for our baseline smoothness class. FLCIs are thus an attractive choice for particular
choices of ∆. Unfortunately, we show that FLCIs have unattractive properties for other
leading choices of ∆: in many cases, they will be inconsistent in the strong sense that power
against fixed points outside the identified set need not converge to one asymptotically.

Motivated by this finding, we next introduce a more general inference approach that
can accommodate a larger class of restrictions ∆. We show that a wide variety of relevant
restrictions ∆ can be written as the finite union of polyhedra, in which case testing hy-
potheses about treatment effects can be cast as a moment inequality problem with nuisance
parameters that enter the moments linearly. This formulation allows us to leverage the large
econometrics literature on testing for moment inequalities (see Canay and Shaikh (2017);
Molinari (2020) for recent reviews). We consider an implementation of this approach based
on the conditional test proposed in Andrews, Roth and Pakes (2019, henceforth ARP),
which has several desirable features in our setting. First, it is computationally tractable
even when the dimension of the nuisance parameters is large, as occurs whenever there are
many post-treatment periods. Second, we show that the conditional test has optimal local
asymptotic power for parameter configurations satisfying a linear independence constraint
qualification (LICQ) condition. When ∆ bounds the post-treatment bias by the maximal
pre-treatment violation of parallel trends, for example, this condition is satisfied when the
pre-treatment maximum is unique. Our optimal local asymptotic power result is novel, and
relies on structure in our context not present in the more general setting considered in ARP.

We recommend empirical researchers use our methods to conduct sensitivity analyses in
which they report confidence sets under varying restrictions on the possible differences in

3



trends. For example, one class of restrictions we consider restricts the post-treatment viola-
tion of parallel trends to be no more than M̄ times larger in magnitude than the maximum
pre-treatment violation. It is then natural for the researcher to report confidence sets for
different values of M̄ , which highlights how the results change under different assumptions
about how bad the violation of parallel trends could be relative to the pre-trend. Performing
such sensitivity analyses makes clear what must be assumed about the possible differences
in trends in order to draw specific causal conclusions. We provide an R package, HonestDiD,
that implements our recommended methods.1 We illustrate our recommended approach with
an application to two recently published papers.

Related literature: Our approach is most closely related to Manski and Pepper (2018),
who consider partial identification of treatment effects under direct bounds on the extent to
which parallel trends is violated in the post-treatment period. These restrictions are nested
as a special case within our framework. We consider a larger class of possible restrictions,
however, which allows us to formalize a variety of intuitions expressed in applied work,
including the notion that pre-trends are informative about post-treatment differences in
trends. Additionally, we develop methods for conducting inference on the causal effects
of treatment under these assumptions, whereas Manski and Pepper (2018) only consider
identification.

Several other recent papers consider various relaxations of the parallel trends assump-
tion. Keele, Small, Hsu and Fogarty (2019) develop techniques for testing the sensitivity
of difference-in-differences designs to violations of the parallel trends assumption, but they
do not incorporate information from the observed pre-trends in their sensitivity analysis.
Empirical researchers commonly adjust for the extrapolation of a linear trend from the pre-
treatment periods when there are concerns about violations of the parallel trends assumption,
which is valid if the difference in trends is exactly linear (e.g., Dobkin, Finkelstein, Kluender
and Notowidigdo, 2018; Goodman-Bacon, 2018, 2021; Bhuller, Havnes, Leuven and Mogstad,
2013). Our methods nest this approach as a special case, but allow for valid inference under
less restrictive assumptions about the class of possible differences in trends. Freyaldenhoven
et al. (2019) propose a method that allows for violations of the parallel trends assumption but
requires an additional covariate that is affected by the same confounding factors as the out-
come but not by the treatment of interest. Ye, Keele, Hasegawa and Small (2020) consider
partial identification of treatment effects when there exist two control groups whose out-
comes have a bracketing relationship with the outcome of the treated group. Leavitt (2020)
proposes an empirical Bayes approach calibrated to pre-treatment differences in trends, and

1The latest version may be downloaded here.
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Bilinski and Hatfield (2020) and Dette and Schumann (2020) propose approaches based on
pre-tests for the magnitude of the pre-treatment violations of parallel trends.

Our methods address several concerns related to established empirical practice in difference-
in-differences and event-study designs. First, common tests for pre-trends may be under-
powered against meaningful violations of parallel trends, potentially leading to severe un-
dercoverage of conventional confidential intervals (Freyaldenhoven et al., 2019; Roth, 2019;
Bilinski and Hatfield, 2020; Kahn-Lang and Lang, 2020). Second, statistical distortions from
pre-testing for pre-trends may further undermine the performance of conventional inference
procedures (Roth, 2019). Third, parametric approaches to controlling for pre-existing trends
may be sensitive to functional form assumptions (Wolfers, 2006; Lee and Solon, 2011). We
address these issues by providing tools for inference that do not rely on an exact parallel
trends assumption and that make clear the mapping between assumptions on the potential
differences in trends and the strength of one’s conclusions.

Our work complements a growing literature on the causal interpretation of event-study
coefficients in two-way fixed effects models in the presence of staggered treatment timing
or heterogeneous treatment effects (Borusyak and Jaravel, 2016; Athey and Imbens, 2018;
Goodman-Bacon, 2021; Callaway and Sant’Anna, 2020; de Chaisemartin and D’Haultfœuille,
2020; Sun and Abraham, 2020). Several alternative estimators have been proposed that
consistently estimate sensible causal estimands under a suitable parallel trends assumption.
Our methodology complements these approaches by providing tools to assess the sensitivity
of these methods to violations of the corresponding parallel trends assumption; see Remark
1 for additional details.

2 General set-up

We now introduce the assumptions, target parameter, and inferential goal considered in the
paper. In the main text, we consider a finite-sample normal model with known covariance
matrix, which arises as an asymptotic approximation to a variety of econometric settings of
interest. In the supplementary materials, we show how the finite-sample results presented in
this model translate to uniform asymptotic statements over a large class of data-generating
processes.

2.1 Finite sample normal model

Consider the model
β̂n „ N pβ, Σnq , (2)
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where β̂n P R¯
T`T̄ and Σn “

1
n
Σ˚ for Σ˚ a known, positive-definite p

¯
T ` T̄ q ˆ p

¯
T ` T̄ q

matrix. We refer to β̂n as the estimated event-study coefficients, and partition β̂n into vectors
corresponding with the pre-treatment and post-treatment periods, β̂n “ pβ̂1n,pre, β̂

1
n,postq

1,
where β̂n,pre P R¯

T and β̂n,post P RT̄ . We adopt analogous notation to partition other vectors
that are the same length as β̂n.

The finite sample normal model (2) can be viewed as an asymptotic approximation,
since a variety of estimators for difference-in-differences and event study designs will yield
asymptotically normally-distributed event-study coefficients,

?
n
´

β̂n ´ β
¯

d
ÝÑ N p0, Σ˚q, un-

der mild regularity conditions (see Remarks 1-2). This convergence in distribution suggests
the finite-sample approximation β̂n

d
« N pβ, Σnq , where

d
« denotes approximate equality

in distribution and Σn “
1
n
Σ˚. We derive results assuming this equality in distribution

holds exactly in finite samples. In the supplemental materials, we show that results in the
finite sample normal model translate to uniform asymptotic statements for a large class of
data-generating processes.

We assume the mean vector β satisfies the following causal decomposition.

Assumption 1. The parameter vector β can be decomposed as

β “

˜

τpre

τpost

¸

loooomoooon

:“ τ

`

˜

δpre

δpost

¸

loooomoooon

:“ δ

with τpre ” 0. (3)

The first term, τ , represents the dynamic causal effects of interest. We assume the treatment
has no causal effect prior to its implementation, so τpre “ 0. The second term, δ, represents
the difference in trends between the treated and comparison groups that would have occurred
absent treatment. The parallel trends assumption imposes that δpost “ 0, and therefore
βpost “ τpost under parallel trends.

Example: Difference-in-differences We observe an outcome Yit for a sample of individ-
uals i “ 1, . . . , N for three time periods, t “ ´1, 0, 1. Individuals in the treated population
(Di “ 1) receive a treatment between period t “ 0 and t “ 1.2 The observed outcome
equals Yi,t “ DiYi,tp1q ` p1´DiqYi,tp0q, where Yi,tp1q and Yi,tp0q are the potential outcomes
for individual i in period t associated with the treatment and control conditions. Assume
the treatment has no causal effect prior to implementation, meaning Yi,tp1q “ Yi,tp0q for
t ă 1. The causal estimand of interest is the average treatment effect on the treated (ATT),

2For the purposes of this example, we think of the observed sample as consisting of N1 independent draws
from the treated pDi “ 1q population and N0 independent draws from the control population pDi “ 0q with
N “ N0 `N1, as in Abadie and Imbens (2006).
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τATT “ E rYi,1p1q ´ Yi,1p0q |Di “ 1s. In this setting, researchers commonly estimate the “dy-
namic event study regression”

Yit “ λi ` φt `
ÿ

s‰0

βs ˆ 1rt “ ss ˆDi ` εit. (4)

The estimated coefficient β̂1 is the “difference-in-differences” of sample means across treated
and untreated groups between period t “ 0 and t “ 1, β̂1 “ pȲ1,1´ Ȳ1,0q´pȲ0,1´ Ȳ0,0q, where
Ȳd,t is the sample mean of Yit for treatment group d in period t. The “pre-period” coefficient
β̂´1 can likewise be written as β̂´1 “ pȲ1,´1 ´ Ȳ1,0q ´ pȲ0,´1 ´ Ȳ0,0q.

Taking expectations and re-arranging, we see that

E
”

β̂1

ı

“ τATT ` E rYi,1p0q ´ Yi,0p0q |Di “ 1s ´ E rYi,1p0q ´ Yi,0p0q |Di “ 0s
looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon

Post-treatment differential trend “: δ1

,

E
”

β̂´1

ı

“ E rYi,´1p0q ´ Yi,0p0q |Di “ 1s ´ E rYi,´1p0q ´ Yi,0p0q |Di “ 0s
looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon

Pre-treatment differential trend “: δ´1

.

The parameter β “ E
”

β̂
ı

thus satisfies the decomposition (3), where τpost “ τATT is the
ATT, δpost “ δ1 is the difference in trends in untreated potential outcomes between t “ 0 and
t “ 1, and δpre “ δ´1 is the analogous difference in trends for untreated potential outcomes
between t “ ´1 and t “ 0. Under suitable regularity conditions, β̂ will also satisfy a central
limit theorem, so that (2) will hold approximately in large samples. N

Remark 1 (Staggered timing). As discussed above, several recent papers have noted that the
estimand of specification (4) does not have an intuitive causal interpretation when treatment
is staggered and there are heterogeneous treatment effects. However, Sun and Abraham
(2020), Callaway and Sant’Anna (2020), and de Chaisemartin and D’Haultfoeuille (2021)
propose alternative methods for forming “event-studies” with a sensible interpretation in
such settings. Since these estimators are asymptotically normally distributed, they fit into
our framework, where now τpost corresponds with a weighted average of causal effects at each
lag since treatment, and δ corresponds with a weighted average of differences in untreated
potential outcomes.

Remark 2 (Other event-study estimators). Other examples of estimators that yield asymp-
totically normal event-study estimates (under suitable regularity conditions) include the
GMM procedure proposed by Freyaldenhoven et al. (2019), instrumental variables event-
studies (Hudson, Hull and Liebersohn, 2017), as well as a range of procedures that flexibly
control for differences in covariates between treated and comparison groups (e.g., Heckman,
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Ichimura, Smith and Todd, 1998; Abadie, 2005; Sant’Anna and Zhao, 2020).

Remark 3 (Anticipatory effects). In some cases, there may be changes in behavior in
anticipation of the policy of interest, and therefore, βpre may reflect the causal anticipatory
effects of the policy (Malani and Reif, 2015). This violates Assumption 1, which assumes
pre-treatment coefficients do not reflect causal effects. A simple solution is available if one is
willing to assume that anticipatory effects only occur in a fixed window prior to the policy
change. Under such an assumption, the researcher may re-normalize the definition of the
“pre-treatment” period to be the period prior to when anticipatory effects can occur, in which
case βpre is determined only based on untreated potential outcomes.

Remark 4 (Design-based Uncertainty). Rambachan and Roth (2020) shows that the normal
model (2) also arises from a design-based model that treats the finite population of observed
units as fixed and views the assignment of treatment as the source of randomness in the data.
This perspective may be preferred to the usual sampling-based approach to uncertainty in
settings where the super-population is not clear, such as when all 50 US states are observed
(Manski and Pepper, 2018; Abadie, Athey, Imbens and Wooldridge, 2020).

2.2 Target parameter and identification

The parameter of interest is a linear combination of the post-treatment causal effects, θ :“

l1τpost for some known T̄ -vector l. For example, θ equals the t-th period causal effect τt when
the vector l equals the t-th standard basis vector. Similarly, θ equals the average causal
effect across all post-treatment periods when l “

`

1
T̄
, ..., 1

T̄

˘1.
We relax the parallel trends assumption by assuming that δ lies in a set of possible

differences in trends ∆, which is specified by the researcher. This nests the usual parallel
trends assumption as a special case with ∆ “ tδ : δpost “ 0u. Since δpre “ E

”

β̂pre

ı

is
identified, the assumption that δ “ pδ1pre, δ1postq1 P ∆ restricts the possible values of δpost given
the (identified) value of the pre-treatment difference in trends δpre. It is natural to place
restrictions on the relationship between δpre and δpost, since researchers frequently test the
null hypothesis that δpre “ 0 as a way of assessing the plausibility of the assumption that
δpost “ 0.

Under the assumption that δ P ∆ ‰ tδ : δpost “ 0u, the parameter θ will typically be
set-identified. For a given value of β, the identified set for θ under the assumption δ P ∆ is

Spβ,∆q :“

#

θ : Dδ P ∆, τpost P RT̄ s.t. l1τpost “ θ, β “ δ `

˜

0

τpost

¸+

, (5)

8



i.e. the set of values of θ consistent with β under the restriction that δ P ∆. When ∆ is a
closed and convex set, the identified set has a simple characterization.

Lemma 2.1. If ∆ is closed and convex, then Spβ,∆q is an interval in R, Spβ,∆q “
rθlbpβ,∆q, θubpβ,∆qs, where

θlbpβ,∆q :“ l1βpost ´
´

max
δ
l1δpost, s.t. δ P ∆, δpre “ βpre

¯

looooooooooooooooooooooomooooooooooooooooooooooon

“:bmaxpβpre;∆q

, (6)

θubpβ,∆q :“ l1βpost ´
´

min
δ
l1δpost, s.t. δ P ∆, δpre “ βpre

¯

loooooooooooooooooooooomoooooooooooooooooooooon

“:bminpβpre;∆q

. (7)

Proof. Re-arranging terms in (5), the identified set can be equivalently written as Spβ,∆q “
tθ : Dδ P ∆ s.t. δpre “ βpre, θ “ l1βpost ´ l

1δpostu. The result is then immediate.

Example: Difference-in-differences (continued) Point identification of the ATT in
the difference-in-differences design is typically obtained by assuming that the counterfactual
post-treatment difference in trends δ1 is exactly zero. Instead, we assume δ “ pδ´1, δ1q

1 P ∆

for some set ∆. When ∆ is closed and convex, the identified set for the ATT will be
rβ1 ´ bmax, β1 ´ bmins, where bmax “ maxδ δ1 s.t pδ´1, δ1q

1 P ∆ is the maximum possible bias
of β̂1 given δ1 and bmin is defined analogously.N

Additionally, it is immediate from the definition of the identified set in (5) that if ∆ is
the finite union of sets, ∆ “

ŤK
k“1 ∆k, then its identified set is the union of the identified

sets for its subcomponents,

Spβ,∆q “
K
ď

k“1

Spβ,∆kq. (8)

This fact will be useful, since several ∆s of interest in empirical practice can be written as
the finite union of convex sets, as we will see below.

2.3 Possible choices of ∆

The class of possible differences in trends ∆ must be specified by the researcher, and the
choice of ∆ will depend on the economic context. We highlight several possible choices of ∆

that may be reasonable in empirical applications and formalize intuitive arguments that are
commonly made by applied researchers regarding possible violations of parallel trends.
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2.3.1 Smoothness restrictions

Researchers often worry about confounding factors that lead to different secular trends among
the treated and comparison groups. When the researcher expects the secular trends to evolve
smoothly over time, it is common to control for a linear group-specific time trend.3 This
approach is valid if the difference in trends is linear, i.e. ∆ “ tδ : δt “ γ ¨ t, γ P Ru, where
we adopt the convention that periods t ă 0 and t ą 0 respectively correspond with the
elements of δpre and δpost, and δ0 ” 0.4 There are often concerns, however, that the linear
specification is not exactly correct (Wolfers, 2006; Lee and Solon, 2011). A natural relaxation
is therefore to impose only that the differential trends evolve smoothly over time – say with
slope changing by no more than M between consecutive periods. This can be formalized by
requiring that δ lie in the set

∆SD
pMq :“ tδ : |pδt`1 ´ δtq ´ pδt ´ δt´1q| ďM, @tu. (9)

The parameter M ě 0 governs the amount by which the slope of δ can change between
consecutive periods, and thus bounds the discrete analog of the second derivative (we use
the abbreviation SD for “second differences” or “second derivative”).5 In the special case
where M “ 0, ∆SDp0q requires that the difference in trends be exactly linear.

It is worth highlighting that the common practice of testing for pre-trends is intuitively
based on the notion that differences in trends evolve smoothly over time. Indeed, a pre-
trends test would not be very informative about the bias in a difference-in-differences design
if the difference in trends could be close to zero in the pre-treatment period and then change
sharply around the time of treatment. The restriction that δ P ∆SDpMq is thus one way of
formalizing this intuition.

Example: Difference-in-differences (continued) In the three-period difference-in-
differences model, assuming the differential trend is exactly linear is equivalent to assuming
∆ “ tδ : δ1 “ ´δ´1u. Assuming δ P ∆SDpMq requires only that the linear extrapolation be
approximately correct, δ1 P r´δ´1 ´M,´δ´1 `M s.

3Specifically, researchers often augment specification (4) with group-specific linear trends, an approach
Dobkin et al. (2018) refer to as a “parametric event-study.” An analogous approach is to estimate a linear
trend using only observations prior to treatment, and then subtract out the estimated linear trend from the
observations after treatment (Bhuller et al., 2013; Goodman-Bacon, 2018, 2021).

4Setting δ0 “ 0 corresponds with the common practice of normalizing β0 “ 0, as in specification (4).
5Restrictions on the second derivative of the conditional expectation function or density have been used

in regression discontinuity settings (Kolesar and Rothe, 2018; Frandsen, 2016; Noack and Rothe, 2020).
Smoothness restrictions are also used to obtain partial identification in Kim, Kwon, Kwon and Lee (2018).
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2.3.2 Bounding Relative Magnitudes

A second related approach bounds the worst-case post-treatment violation of parallel trends
in terms of the worst-case violation in the pre-treatment period. For instance, the restriction

∆RM
pM̄q “ tδ : @t ě 0, |δt`1 ´ δt| ď M̄ ¨max

să0
|δs`1 ´ δs|u

bounds the maximum post-treatment violation of parallel trends (between consecutive pe-
riods) by M̄ times the maximum pre-treatment violation of parallel trends. (We use the
abbreviation RM for “relative magnitudes”.) Likewise, the restriction

∆SDRM
pM̄q “ tδ : @t ě 0, |pδt`1 ´ δtq ´ pδt ´ δt´1q| ď M̄ ¨max

să0
|pδs`1 ´ δsq ´ pδs ´ δs´1q|u

bounds the maximum deviation from a linear trend in the post-treatment period by M̄ times
the equivalent maximum in the pre-treatment period. The set ∆SDRMpM̄q is thus similar to
∆SDpMq introduced above, except it allows the magnitude of the possible non-linearity to
explicitly depend on the observed pre-trends.

Example: Difference-in-differences (continued) Assuming δ P ∆RMpM̄q bounds the
magnitude of δ1 based on the magnitude of δ´1, i.e. ∆RMpM̄q “ tpδ´1, δ1q

1 : |δ1| ď M̄ |δ´1|u.
The larger the magnitude of the observed pre-period violation in parallel trends, |δ´1|, the
wider the range of possible post-period violations of parallel trends.N

2.3.3 Sign and monotonicity restrictions

Context-specific knowledge may sometimes also suggest sign or monotonicity restrictions on
the differential trend. For instance, if the policy of interest occurs at the same time as a
confounding policy change that we expect to have a positive effect on the outcome, we might
restrict the post-treatment bias to be positive, δ P ∆PB :“ tδ : δt ě 0 @t ě 0u. Likewise,
there may be secular pre-existing trends that we expect would have continued following
the treatment date.6 We may then wish to impose that the differential trend be increasing,
δ P ∆I :“ tδ : δt ě δt´1 @tu, or monotone with unknown sign, δ P ∆Mon :“ ∆IYp´∆Iq. Sign
and monotonicity restrictions may be combined with the previously discussed restrictions,
such as ∆SDPBpMq :“ ∆SDpMq X ∆PB, ∆SDIpMq :“ ∆SDpMq X ∆I , and ∆RMIpM̄q :“

6Monotone violations of parallel trends are often discussed in applied work. For example, Lovenheim and
Willen (2019) argue that violations of parallel trends cannot explain their results because “pre-[treatment]
trends are either zero or in the wrong direction (i.e., opposite to the direction of the treatment effect).”
Greenstone and Hanna (2014) estimate upward-sloping pre-existing trends and argue that “if the pre-trends
had continued” their estimates would be upward biased.
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∆RMpM̄q X∆I .

2.3.4 Polyhedral restrictions

Although the restrictions described above will be sensible in many empirical contexts, re-
searchers will often have context-specific knowledge that motivates alternative restrictions.
To accommodate such cases, we consider the broad class of ∆s that can be written as poly-
hedra (sets defined by linear inequalities), or the finite union of polyhedra.

Definition 1 (Polyhedral restriction). The class ∆ is polyhedral if it takes the form ∆ “

tδ : Aδ ď du for some known matrix A and vector d, where the matrix A has no all-zero
rows.

All of the examples described above can be written either as polyhedral restrictions or
finite unions of such restrictions. For instance, ∆SDpMq and ∆SDPBpMq can be written
directly as polyhedra.7 Likewise, ∆RMpM̄q or ∆SDRMpM̄q can be written as the finite union
of polyhedra, where each polyhedron corresponds with a different location for the maximum
pre-treatment violation.8 The class of (finite unions of) polyhedra is quite broad, and allows
for a variety of other restrictions that may be relevant in empirical work.

Remark 5 (Bounded variation assumptions). Manski and Pepper (2018, henceforth MP)
consider identification of treatment effects under “bounded variation assumptions” which can
be expressed in the polyhedral form introduced in Definition 1. In the ongoing difference-in-
differences example, MP’s “bounded difference-in-differences variation” assumption directly
bounds the magnitude of |δ1| when β̂1 is the coefficient from specification (4). MP also
consider “bounded time” and “bounded state” variation assumptions, which correspond with
bounds on the magnitudes of |µ11´µ10| and |µ11´µ01|, where µds :“ E rY p0q|D “ d, t “ ss.
These restrictions can be accommodated by augmenting the vector β̂ to include the sam-
ple means corresponding with estimates of the differences in outcomes for the appropriate
treatment-group by time period cells.9 �

7In our ongoing three-period difference-in-differences example, ∆SDpMq “ tδ : ASDδ ď dSDu for ASD “
ˆ

´1 1
1 ´1

˙

and dSD “ pM,Mq1. This generalizes naturally when there are multiple pre-periods and

multiple post-periods.
8For example, define the polyhedra ∆RM

s,` pM̄q “ tδ : @t ě 0, |δt`1´ δt| ď M̄pδs`1´ δsqu and ∆RM
s,´ “ tδ :

@t ě 0, |δt`1 ´ δt| ď ´M̄pδs`1 ´ δsqu. Then ∆RM pM̄q “
Ť

să0

`

∆RM
s,` pM̄q Y∆RM

s,´ pM̄q
˘

.
9After augmenting the vector for the event-study coefficients, Equation (3) must be re-written to replace

p0, τ 1postq
1 with Cτpost, where C is a matrix that accounts for the fact that elements of τ enter both the

event-study coefficients and the augmented terms. Our proposed methods and results do not rely on the
structure that C “ p0, Iq1 and thus easily accommodate this modification.
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Remark 6 (Ashenfelter’s dip). Researchers studying labor market training and related
programs may be concerned about Ashenfelter’s dip (Ashenfelter, 1978), in which earnings
for the treated group trend downwards (relative to control) before treatment and upwards
afterwards. In this type of setting, researchers might naturally use a polyhedral ∆ to impose
i) restrictions on the signs of the pre-treatment and post-treatment biases, as well as ii)
restrictions on the magnitude of the rebound effect relative to the pre-treatment shock.

2.4 Inferential Goal

Given a particular choice of ∆, we construct confidence sets Cn that are uniformly valid for
all parameter values θ in the identified set,

inf
δP∆,τ

inf
θPSp∆,δ`τq

Ppδ,τ,Σnq pθ P Cnq ě 1´ α. (10)

We subscript the probability operator by pδ, τ,Σnq to make explicit that the distribution of
β̂n (and hence Cn) depends on these parameters. In the supplemental materials, we show that
the coverage requirement (10) in the normal model translates to uniform asymptotic coverage
over a large class of data-generating processes. Confidence sets satisfying this criterion are
referred to as “honest” (Li, 1989).

We will primarily focus our attention on constructing confidence sets for the case where
∆ is a polyhedron. A valid confidence set for the case where ∆ is the finite union of polyedra
can then be constructed by taking the union of the confidence sets for each of its components,
as formalized in the following lemma.

Lemma 2.2. Suppose that for each k “ 1, ..., K, the confidence set Cn,k satisfies (10) with
∆ “ ∆k. Then the confidence set Cn “

ŤK
k“1 Cn,k satisfies (10) with ∆ “

ŤK
k“1 ∆k.

In the next two sections, we introduce two approaches to obtain confidence sets satisfying
(10). The first approach, fixed length confidence intervals, provide particularly attractive
properties for specific forms of ∆, such as ∆SDpMq. The second approach, based on moment
inequalities, can accommodate a much wider range of restrictions.

3 Inference using Fixed Length Confidence Intervals

We first consider fixed length confidence intervals (FLCIs) based on affine estimators. FLCIs
deliver attractive finite-sample guarantees for certain choices of ∆, including our baseline
smoothness class ∆SDpMq, but may perform poorly for other types of restrictions.
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3.1 Constructing FLCIs

Following Donoho (1994) and Armstrong and Kolesar (2018a, 2020), we consider fixed
length confidence intervals based on an affine estimator for θ, denoted by Cα,npa, v, χq :“
´

a` v1β̂n

¯

˘ χ, where a and χ are scalars and v P R¯
T`T̄ . We minimize the half-length of

the confidence interval, χ, subject to the constraint that Cα,npa, v, χq satisfies the coverage
requirement (10).

To do so, note that a`v1β̂n „ N pa` v1β, v1Σnvq, and hence |a`v1β̂n´θ| „ |N pb, v1Σnvq |,
where b “ a` v1β´ θ is the affine estimator’s bias for θ. Observe further that θ P Cnpa, v, χq
if and only if |a`v1β̂n´θ| ď χ. For fixed values a and v, the smallest value of χ that satisfies
(10) is therefore the 1 ´ α quantile of the |N

`

b̄, v1Σnv
˘

| distribution, where b̄ is the affine
estimator’s worst-case bias

b̄pa, vq :“ sup
δP∆,τpostPRT̄

ˇ

ˇ

ˇ

ˇ

ˇ

a` v1

˜

δ `

˜

0

τpost

¸¸

´ l1τpost

ˇ

ˇ

ˇ

ˇ

ˇ

. (11)

Let cvαptq denote the 1´α quantile of the folded normal distribution |N pt, 1q |.10 For fixed
a and v, the smallest value of χ satisfying the coverage requirement (10) is thus

χnpa, v;αq “ σv,n ¨ cvαpb̄pa, vq{σv,nq, (12)

where σv,n :“
?
v1Σnv. The optimal (i.e., minimum-length) FLCI is constructed by choosing

the values of a and v to minimize (12). When ∆ is convex, this minimization can be solved
as a nested optimization problem, where both the inner and outer minimizations are convex
(Low, 1995; Armstrong and Kolesar, 2018a, 2020). We denote the 1´α level, optimal FLCI
by CFLCIα,n :“

´

an ` v
1
nβ̂n

¯

˘ χn, where χn :“ infa,v χnpa, v;αq and an, vn are the optimal
values in the minimization.

Example: ∆SDpMq. Suppose θ “ τ1. For ∆SDpMq, the affine estimator used by the
optimal FLCI takes the form a`v1β̂n “ β̂n,1´

ř0
s“´

¯
T`1ws

´

β̂n,s ´ β̂n,s´1

¯

, where the weights
ws sum to one (but may be negative). This estimator adjusts the event-study coefficient for
t “ 1 by an estimate of the differential trend between t “ 0 and t “ 1 formed by taking
a weighted average of the differential trends in periods prior to treatment. The worst-case
bias will be smaller if more weight is placed on pre-treatment periods closer to the treatment
date, but it may reduce variance to place more weight on earlier pre-periods. The weights
ws are optimally chosen to balance this tradeoff. N

10If t “ 8, we define cvα “ 8.
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3.2 Finite-sample near optimality

In particular cases of interest, such as when ∆ “ ∆SDpMq, the FLCIs introduced above have
near-optimal expected length in the finite-sample normal model. The following result, which
is a consequence of results in Armstrong and Kolesar (2018a, 2020), bounds the ratio of the
expected length of the shortest possible confidence interval that controls size relative to the
length of the optimal FLCI.

Assumption 2. Assume i) ∆ is convex and centrosymmetric (i.e. δ P ∆ implies ´δ P ∆),
and ii) δA P ∆ is such that pδ ´ δAq P ∆ for all δ P ∆.

Proposition 3.1. Suppose δA and ∆ satisfy Assumption 2.11 Let Iαp∆,Σnq denote the class
of confidence sets that satisfy the coverage criterion (10) at the 1 ´ α level. Then, for any
τA P RT̄ , Σ˚ positive definite, and n ą 0,

infCα,nPIαp∆,Σnq EpδA,τA,Σnq rλpCα,nqs
2χn

ě
z1´αp1´ αq ´ z̃αΦpz̃αq ` φpz1´αq ´ φpz̃αq

z1´α{2

,

where λp¨q denotes the length (Lebesgue measure) of a set and z̃α “ z1´α ´ z1´α{2.

Part i) of Assumption 2 is satisfied for ∆SDpMq but not for our other ongoing examples.
For example, ∆SDPBpMq is convex but not centrosymmetric, and ∆RMpM̄q is neither convex
nor centrosymmetric. Part ii) of Assumption 2 is satisfied whenever parallel trends holds
in both the pre-treatment and post-treatment periods pδA “ 0q and whenever δA is a linear
trend for the case of ∆SDpMq.

FLCIs thus offer attractive guarantees for the case of ∆SDpMq. When α “ 0.05, the lower
bound in Proposition 3.1 evaluates to 0.72, so the expected length of the shortest possible
confidence set that satisfies the coverage requirement (10) is at most 28% shorter than the
length of the optimal FLCI when the conditions of the proposition hold.

3.3 (In)Consistency of FLCIs

The finite-sample guarantees discussed above do not apply for several types of restrictions
∆ of importance, including those that construct bounds using the maximum pre-treatment
violation or that incorporate sign and shape restrictions. We now show that the FLCIs can
perform poorly under such restrictions. We first provide two illustrative examples, and then
state a formal inconsistency result.

11We use δA for the null value of δ, rather than δ0, since we use the notation δt to refer to the component
of δ corresponding with period t.
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Example: ∆SDPBpMq and ∆SDIpMq. Suppose θ “ τ1. The worst-case bias of an affine
estimator over ∆SDPBpMq or ∆SDI is the same as the worst-case bias for that estimator
over ∆SDpMq.12 Since the construction of the optimal FLCI depends only on the worst-case
bias and variance of the affine estimator, it follows that the optimal FLCI constructed using
∆SDPBpMq or ∆SDIpMq is the same as the one constructed using ∆SDpMq. Therefore, the
optimal FLCI does not adapt to additional sign or monotonicity restrictions. N

Example: ∆RMpM̄q. Suppose θ “ τ1. If ∆ “ ∆RMpM̄q and M̄ ą 0, then all affine
estimators for τ1 have infinite worst-case bias, since δ P ∆RMpM̄q can have |δ1| arbitrarily
large if |δ´1| is also sufficiently large. Thus, the only valid FLCI is the entire real line. N

We next provide a formal result on the (in)consistency of the FLCIs. We consider “small-
Σ” asymptotics wherein the sampling uncertainty grows small relative to the length of the
identified set, and provide necessary and sufficient conditions under which the FLCIs include
fixed points outside of the identified set with non-vanishing probability.13 Recall from Lemma
2.1 that the identified set Spβ,∆q is an interval when ∆ is convex, with length equal to
θubpβ,∆q ´ θlbpβ,∆q “ bmaxpβpre,∆q ´ bminpβpre,∆q. Since the length of the identified set
only depends on ∆ and βpre, denote it by LIDpβpre,∆q. Our next result shows that CFLCIα,n

is consistent if and only if LIDpβpre,∆q is its maximum possible value, provided that the
identified set is not the entire real line (in which case any procedure is trivially consistent).

Assumption 3 (Identified set maximal length and finite). Suppose δA P ∆ is such that
LIDpδA,pre,∆q “ supδpreP∆pre

LIDpδpre,∆q ă 8, where ∆pre “ tδpre P R¯
T : Dδpost s.t. pδ1pre, δ1postq1 P

∆u is the set of possible values for δpre.

Proposition 3.2. Suppose ∆ is convex and α P p0, 0.5s. Fix δA P ∆ and τA P RT̄ , and
suppose SpδA ` τA,∆q ‰ R. Then pδA,∆q satisfy Assumption 3 if and only if CFLCIα,n is
consistent, meaning that

lim
nÑ8

PpδA,τA,Σnq
`

θout P CFLCIα,n

˘

“ 0 for all θout R SpδA ` τA,∆q.

Thus, if Assumption 3 fails, then CFLCIα,n is inconsistent in the strong sense that it includes
fixed points outside of the identified set with non-vanishing probability. It follows that there

12Suppose the vector δ maximizes the bias for an affine estimator pa, vq over ∆SDpMq. The vector that
adds a constant slope to δ, say δ̃c “ δ ` c ¨ p´

¯
T, ..., T̄ q1, also lies in ∆SDpMq, and for c sufficiently large, δ̃c

will lie in ∆SDPBpMq. Moreover, the worse-case bias will be the same for δ and δ̃c, since if pa, vq has finite
worst-case bias it must subtract out a weighted average of the pre-treatment slopes.

13See, e.g., Kadane (1971) and Moreira and Ridder (2019) for other uses of small-Σ asymptotics.
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will be some δA P ∆ such that the FLCI is inconsistent under δA unless the identified set is
always the same length.14

Remark 7. In the three-period difference-in-differences example, Assumption 3 holds ev-
erywhere for ∆SDpMq (since the identified set is always the same length, 2M), for values of
δ where the sign restrictions do not bind for ∆SDPBpMq, and nowhere for ∆RMIpM̄q. The
restrictiveness of Assumption 3 thus depends greatly on ∆. �

Remark 8. Proposition 3.2 implies that FLCIs can potentially be inconsistent when ∆ is
convex and centrosymmetric if δ ‰ 0. For example, if ∆ “ tδ P ∆SDpMq : |δ1| ď Mu, then
the FLCI is inconsistent whenever δ´1 ‰ 0, even though Proposition 3.1 implies that the
FLCI is near-optimal for δ “ 0. As discussed above, however, such inconsistency does not
arise for our baseline smoothness class ∆SDpMq.

Remark 9. In Appendix A.1, we further show that if Assumption 3 along with an additional
condition (Assumption 4 introduced below) hold, then the FLCI also has local asymptotic
power approaching the power envelope under the same asymptotics considered in Proposition
3.2. �

The results in this section establish that when certain conditions on ∆ are satisfied, the
FLCIs are consistent and have desirable finite-sample guarantees in terms of expected length.
These conditions hold for our baseline smoothness class ∆SDpMq, but fail for choices of ∆

that may be of interest in empirical applications such as those that construct bounds using a
pre-treatment maximum or incorporate sign and monotonicity restrictions. This motivates
us to next consider an alternative method for inference that can accommodate a larger range
of restrictions.

4 Inference using Moment Inequalities

In this section, we introduce a more general approach for inference that has good asymptotic
properties over a large class of possible restrictions ∆. We show that inference on the partially
identified parameter θ “ l1τpost in this setting is equivalent to testing a system of moment
inequalities with a potentially large number of nuisance parameters that enter the moments
linearly. We consider an implementation based on the conditional approach developed in
ARP, which allows us to obtain computationally tractable confidence sets with desirable
power properties for many parameter configurations.

14We also show in Lemma C.26 in the Appendix that the conditions of Proposition 3.1 imply that As-
sumption 3 holds. Thus, the FLCIs obtain finite sample near-optimality in a subset of the cases where they
are consistent.
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4.1 Representation as a moment inequality problem with linear nui-

sance parameters

Consider testing the null hypothesis, H0 : θ “ θ̄, δ P ∆ when ∆ “ tδ : Aδ ď du. We now
show that testing H0 is equivalent to testing a system of moment inequalities with linear
nuisance parameters.

The model (2) implies Epδ,τ,Σnq
”

β̂n ´ τ
ı

“ δ, and hence δ P ∆ if and only if Epδ,τ,Σnq
”

Aβ̂n ´ Aτ
ı

ď

d. Defining Yn “ Aβ̂n ´ d and Mpost “ r0, Is
1 to be the matrix such that τ “Mpostτpost, it is

immediate that the null hypothesis H0 is equivalent to the composite null

H0 : Dτpost P RT̄ s.t. l1τpost “ θ̄ and Epδ,τ,Σnq rYn ´ AMpostτposts ď 0. (13)

In this equivalent form, τpost P RT̄ is a vector of nuisance parameters that must satisfy the
linear constraint l1τpost “ θ̄.

By applying a change of basis, we can further re-write H0 as an equivalent composite null
hypothesis with an unconstrained nuisance parameter. Re-write the expression AMpostτpost

as Ã

˜

θ

τ̃

¸

, where Ã is the matrix that results from applying a suitable change of basis to

the columns of AMpost, and τ̃ P RT̄´1.15 The null H0 is then equivalent to

H0 : Dτ̃ P RT̄´1 s.t. E
”

Ỹnpθ̄q ´ X̃τ̃
ı

ď 0, (14)

where Ỹ pθ̄q “ Yn ´ Ãp¨,1qθ̄ and X̃ “ Ãp¨,´1q. Since Ỹnpθ̄q is normally distributed with covari-
ance matrix Σ̃n “ AΣnA

1 under the finite-sample normal model (2), testing H0 : θ “ θ̄, δ P ∆

is equivalent to testing a system of moment inequalities with linear nuisance parameters.

Remark 10. Testing the hypothesis (14) is a special case of the problem studied in ARP,
which focuses on testing null hypotheses of the form H0 : Dτ s.t. E rY pθq ´Xτ |Xs ď 0. Our
setting is a special case of this framework in which: i) the variable X takes the degenerate
distribution X “ X̃, and ii) Y pθq “ Ỹ pθq is linear in θ. The first feature plays an important
role in developing our consistency and local asymptotic power results presented later in this
section: if i) fails and X is continuously distributed, then the tests proposed by ARP will
generally not be consistent, as they do not allow for the number of moments to grow with
n. The current proof of the optimal local asymptotic result also exploits the geometry of

15Let Γ be a square matrix with the vector l1 in the first row and remaining rows chosen so that Γ has

full rank. Define Ã :“ AMpostΓ
´1. Then AMpostτ “ ÃΓτpost “ Ã

¨

˝

θ
Γp´1,¨qτpost
looooomooooon

:“τ̃

˛

‚. If T̄ “ 1, then τ̃ is

0-dimensional and should be interpreted as 0.
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feature ii), although we conjecture that this could be relaxed to allow Y pθq to vary smoothly
in θ. �

4.2 Constructing conditional confidence sets

A practical challenge to testing the hypothesis (14) in our setting is that the dimension of
the nuisance parameter τ̃ P RT̄´1 grows linearly with the number of post-periods T̄ and
may be large in practice. For instance, in Section 6 we revisit an empirical paper in which
T̄ “ 23. Moreover, 5 of the 12 recent event-study papers reviewed in Roth (2019) have
T̄ ą 10. This renders many moment inequality methods, especially those which rely on test
inversion over a grid for the full parameter vector, practically infeasible. To tractably deal
with the nuisance parameter, we leverage the conditional approach of ARP, which directly
exploits the linear structure of the hypothesis (14) and delivers computationally tractable
and powerful tests even when the number of post-periods T̄ is large.16 We briefly sketch the
construction of the conditional testing approach in our testing problem, and refer the reader
to ARP for full details.

Suppose we wish to test (14) for some fixed θ̄. The conditional testing approach considers
tests based on the profiled test statistic

η̂ :“ min
η,τ̃

η s.t. Ỹnpθ̄q ´ X̃τ̃ ď σ̃n ¨ η, (15)

where σ̃n “
b

diagpΣ̃nq. This linear program selects the value of the nuisance parameters
τ̃ P RT̄´1 that makes the maximum studentized moment the smallest. Duality results from
linear programming (e.g. Schrijver (1986), Section 7.4) imply that the value η̂ obtained from
the primal program (15) equals the optimal value of the dual program,17

η̂ “ max
γ

γ1Ỹnpθ̄q s.t. γ1X̃ “ 0, γ1σ̃n “ 1, γ ě 0. (16)

If a vector γ˚ is optimal in the dual problem above, then it is a vector of Lagrange multipliers
for the primal problem. We denote by V̂n the set of optimal vertices of the dual program.18

16Other moment inequality methods have been proposed for subvector inference, but typically do not
exploit the linear structure of our setting — see, e.g, Romano and Shaikh (2008); Chernozhukov, Newey
and Santos (2015); Bugni, Canay and Shi (2017); Chen, Christensen and Tamer (2018); Kaido, Molinari and
Stoye (2019). Cho and Russell (2019), Gafarov (2019), and Flynn (2019) also provide methods for subvector
inference with linear moment inequalities, but in contrast to our approach require a linear independence
constraint qualification (LICQ) assumption for size control.

17Technically, the duality results require that η̂ be finite. However, one can show that η̂ is finite with
probability 1, unless the span of X̃ contains a vector with all negative entries, in which case the identified
set for θ is the real line. We therefore trivially define our test never to reject if η̂ “ ´8.

18In general, there may not be a unique solution to the dual program. However, Lemma 11 of ARP shows
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To construct critical values, Lemma 9 of ARP shows that conditional on the event γ˚ P V̂n
and a sufficient statistic Sn for the nuisance parameters, the test statistic η̂ follows a truncated
normal distribution,

η̂ | tγ˚ P V̂n, Sn “ su „ ξ | ξ P rvlo, vups,

where ξ „ N
´

γ1˚µ̃, γ
1
˚Σ̃nγ˚

¯

, µ̃ “ E
”

Ỹnpθ̄q
ı

, Sn “ pI ´ Σ̃nγ˚
γ1˚Σ̃nγ˚

γ1˚qỸnpθ̄q, and vlo, vup are

known functions of Σ̃n, s, γ˚.19 All quantiles of the conditional distribution of η̂ in the previ-
ous display are increasing in γ1˚µ̃, and the null hypothesis (14) implies γ1˚µ̃ ď 0. Therefore,
the critical value for the conditional test is the 1 ´ α quantile of the truncated normal dis-
tribution ξ|ξ P rvlo, vups under the worst-case assumption that γ1˚µ̃ “ 0. Let ψCα pỸnpθ̄q, Σ̃nq

denote an indicator for whether the conditional test rejects at the 1´α level. Proposition 6
in ARP implies that the conditional test controls size in the normal model (2). A confidence
set satisfying the uniform coverage criterion (10) can thus be constructed via test inversion,
CCα,n :“ tθ̄ : ψCα pỸnpθ̄q, Σ̃nq “ 0u. Such confidence sets are easy to compute, because they
only require test inversion for the scalar parameter θ̄, and not for the higher-dimensional
nuisance τ̃ .

ARP provide high-level conditions under which coverage in the normal model translates
to uniform asymptotic coverage over a large class of data-generating processes. In the supple-
mentary material, we provide analogous uniform asymptotic results under weaker, lower-level
conditions applicable to the difference-in-differences setting.

4.3 Consistency and optimal local asymptotic power of conditional

confidence sets

We now provide two results on the asymptotic power of the conditional test in our setting.
First, the conditional test is consistent, meaning that any fixed point outside of the identified
set is rejected with probability approaching one as the sample size nÑ 8.

Proposition 4.1. The conditional test is consistent for all polyhedral ∆. For any δA P ∆,
τA P RT̄ , and θout R SpδA ` τA,∆q,

lim
nÑ8

PpδA,τA,Σnq
`

θout R CCα,n
˘

“ 1.

that conditional on any one vertex of the dual program’s feasible set being optimal, every other vertex is
optimal with either probability 0 or 1. It thus suffices to condition on the event that a vector γ˚ P V̂ .

19The cutoffs vlo and vup are the maximum and minimum of the set tx : x “ maxγPFn γ
1ps` Σ̃nγ˚

γ1˚Σ̃nγ˚
xqu

when γ1˚Σ̃nγ˚ ‰ 0, where Fn is the feasible set of the dual program (16). When γ1˚Σ̃nγ˚ “ 0, we define
vlo “ ´8 and vup “ 8, so the conditional test rejects if and only if η̂ ą 0.
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Thus, in contrast to the optimal FLCI, the conditional test is consistent for all polyhedral ∆.
Moreover, this result extends immediately to confidence sets for the case where ∆ is the finite
union of polyhedra of the form considered in Lemma 2.2. In the supplemental materials,
we provide a uniform asymptotic version of this consistency result for points bounded away
from the boundary of the identified set.

We next consider the local asymptotic power of the conditional test. We provide a
condition under which the power of the conditional test against local alternatives converges
to the power envelope. This condition guarantees that the binding and non-binding moments
are sufficiently well-separated at points close to the boundary of the identified set.

Assumption 4. Let ∆ “ tδ : Aδ ď du and fix δA P ∆. Consider the optimizations:

bmaxpδA,preq “ max
δ
l1δpost s.t. Aδ ď d, δpre “ δA,pre

bminpδA,preq “ min
δ
l1δpost s.t. Aδ ď d, δpre “ δA,pre

Assume there exists a solution δ˚ to bmax such that that the rank of ApBpδ˚q,postq is equal to
|Bpδ˚q|, where Bpδ˚q denotes the index of the binding moments at δ˚.20 Likewise, assume
there exists a solution δ˚˚ to bmin such that the rank of ApBpδ˚˚q,postq is equal to |Bpδ˚˚q|.

Assumption 4 considers the problem of finding the differential trend δ P ∆ that is consistent
with the pre-trend identified from the data and causes l1β̂post to be maximally (or minimally)
biased for θ :“ l1τpost. It requires that the “right” number of moments bind when we do this
optimization.

Remark 11 (Connection to LICQ). Assumption 4 is slightly weaker than linear indepen-
dence constraint qualification (LICQ), which has been used recently in the moment inequality
settings of Gafarov (2019), Cho and Russell (2019), Flynn (2019), and Kaido and Santos
(2014); see Kaido, Molinari and Stoye (2020) for a synthesis. We discuss this connection for-
mally in Appendix A.2. We note, however, that many of the aforementioned papers require
LICQ for asymptotic size control, whereas we impose Assumption 4 only for our results on
local asymptotic power. �

Remark 12. In the case with one post-treatment period p
¯
T “ 1q, so that there are no

nuisance parameters, Assumption 4 is satisfied when there is one moment binding at the
edge of the identified set. This assumption holds everywhere for ∆SDpMq when M ą 0. It
holds almost everywhere for ∆SDPBpMq when M ą 0, although it fails when both the sign
restrictions and smoothness restrictions are simultaneously binding. When M “ 0, both the

20That is, ApBpδ˚q,¨qδ˚ “ dBpδ˚q and Ap´Bpδ˚q,¨qδ˚ ´ d´Bpδ˚q “ ´ε´Bpδ˚q ă 0.
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upper and lower bounds for ∆SDpMq and ∆SDPBpMq are binding, so the assumption fails.
More generally, one can show that Assumption 4 does not hold if θ is point identified. �

With this definition in hand, we can now formalize the sense in which the conditional test
has optimal local asymptotic power under Assumption 4. Again let Iαp∆,Σnq denote the
class of confidence sets that satisfy the coverage criterion in (10) at the 1 ´ α level. Under
Assumption 4, the power of the conditional test against local alternatives converges to the
power envelope over Iαp∆,Σnq as nÑ 8.

Proposition 4.2. Fix δA P ∆, τA, and suppose Σ˚ is positive definite. Let θubA “ supθ SpδA`
τA,∆q be the upper bound of the identified set. Suppose Assumption 4 holds. Then, for any
x ą 0,

lim
nÑ8

PpδA,τA,Σnq
ˆ

pθubA `
1
?
n
xq R CCα,n

˙

“ lim
nÑ8

sup
Cα,nPIαp∆,Σnq

PpδA,τA,Σnq
ˆ

pθubA `
1
?
n
xq R Cα,n

˙

“ Φpc˚x´ z1´αq,

for a positive constant c˚. The analogous result holds replacing θubA `
1?
n
x with θlbA´

1?
n
x, for

θlbA the lower bound of the identified set (although the constant c˚ may differ).

In the supplemental materials, we provide a uniform asymptotic analog to this result under
a uniform version of Assumption 4.

The proof of our novel local asymptotic optimality result proceeds in two steps. First,
we show that the local asymptotic power of any test that controls size is bounded above by
that of a particular one-sided t-test under Assumption 4. More specifically, Assumption 4
implies that there is a unique set of Lagrange multipliers γ̄ in the “population version” of the
test statistic η̂pθubq that replaces Ỹ pθubq with its expectation µ̃pθubq in (15). We show that
the optimal test is a one-sided t-test in the direction of γ̄ for alternatives sufficiently close
to θub. Second, we show that the conditional test converges in probability to this optimal
one-sided t-test.

An immediate corollary is that when ∆ “
ŤK
k“1 ∆k, the conditional test based on the

union of confidence sets has optimal local asymptotic power when the ∆k that determines
the identified set bounds is unique and satisfies the conditions of Proposition 4.2.

Corollary 4.1. Fix δA, τA. Suppose that pδA,∆1q satisfy Assumption 4. If ∆2, ..,∆K are
polyhedra such that SpδA ` τA,∆kq Ĺ SpδA ` τA,∆1q for all k ą 1, then the conclusion of
Proposition 4.2 holds for ∆ “

ŤK
k“1 ∆k and CCα,n the union of the conditional confidence sets

for ∆1, ...,∆K.
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This implies, for instance, that the conditional test has optimal local asymptotic power
for ∆RMpM̄q when there is a unique (non-zero) pre-treatment maximum violation, i.e. when
maxsă0 |δs`1 ´ δs| ą 0 has a unique solution. Likewise, the conditional test is optimal for
∆SDRMpM̄q when there is a unique maximum non-linearity in the pre-treatment period.

Remark 13 (Relationship to other moment inequality methods). We are not aware of results
analogous to Proposition 4.2 for any other moment inequality procedure that controls size
in the finite sample normal model. Observe that if Assumption 4 holds, then it also holds if
∆ is augmented to include a moment that is non-binding at both endpoints of the identified
set. Hence, for Proposition 4.2 to hold, the local asymptotic power of the test needs to
be unaffected by the inclusion of such slack moments. For example, although relatively
insensitive to the inclusion of slack moments, the procedures of Romano, Shaikh and Wolf
(2014) and Andrews and Barwick (2012) are still affected by the inclusion of slack moments
via the changes to the first-stage critical value and size-adjustment factor, respectively.21

Remark 14 (Finite sample power of the conditional test). The argument for the optimal-
ity of the conditional approach relies on a unique vector of Lagrange multipliers γ̄ being
dual-optimal with probability approaching 1 asymptotically. The asymptotic guarantees of
Proposition 4.2 thus may not translate to good finite-sample performance in settings where
multiple vectors of Lagrange multipliers are optimal with nontrivial probability. Since a vec-
tor of Lagrange multipliers corresponds with a set of active moments in the primal problem
(15), this will tend to occur in cases where the set of binding and non-binding moments are
not “well-separated” relative to the sampling variation in the data. �

Remark 15 (Hybridization). To mitigate the poor power of the conditional test when the
binding and non-binding moments are not “well-separated,” ARP recommend the use of a
Bonferroni-like hybrid test that combines a first-stage test using least favorable (LF) critical
values with the conditional test. In Appendix B.1, we show that a similar hybrid test can
be constructed using FLCIs as well. We also show that when the size used for the first-
stage test is small, these hybrid approaches have near-optimal local asymptotic power under
Assumption 4.2. We evaluate these hybrid approaches in our Monte Carlo simulations below.

5 Simulation study

In this section, we conduct a simulation study to investigate the performance of the discussed
confidence sets across a range of relevant data-generating processes. We find good size control

21In concurrent work, Cox and Shi (2020) propose a new method for testing moment inequalities with
nuisance paramaters, which like the ARP test is strongly insensitive to slack moments. It is thus possible
that similar results could be obtained for their test as well.
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for all of the procedures, and therefore focus in the main text on a comparison of power to
provide concrete recommendations on the best approach in practice. In the supplementary
material, we present results on size control and other additional simulation results.

5.1 Simulation Design

Our simulations are calibrated using the estimated covariance matrix from the 12 recently-
published papers surveyed in Roth (2019). For any given paper in the survey, we denote by Σ̂

the estimated variance-covariance matrix from the event-study in the paper, calculated using
the clustering scheme specified by the authors. For a chosen mean vector β, we simulate
event-study coefficients β̂s from a normal model, β̂s „ N

´

β, Σ̂
¯

.22 In simulation s, we

construct nominal 95% confidence sets for the parameter of interest θ using the pair pβ̂s, Σ̂q
for each proposed procedure. The parameter of interest is the causal effect in the first
post-treatment period (θ “ τ1).23

For a given choice of ∆, we compute the identified set Spβ,∆q and calculate the expected
excess length for each of the proposed confidence sets. We benchmark the expected excess
length of our proposed confidence sets relative to an efficiency bound for confidence sets that
satisfy the uniform coverage requirement.24 We report the efficiency ratio of each procedure,
which is defined as the ratio of the optimal benchmark relative to the average excess length
for the procedure. All results are calculated over 1000 simulations per paper.

We consider four choices of ∆ to highlight the performance of our proposed confidence
sets across a range of conditions: ∆SDpMq, ∆SDPBpMq, ∆RMpM̄q, and ∆SDRMpM̄q. We
consider simulations under the assumption of zero treatment effects, so that τ “ 0 and thus
β “ δ. We consider two forms for δ. First, we consider the baseline case of parallel trends
(δ “ 0). Second, we consider a “pulse” pre-trend in which δ´1 is non-zero and the remaining
elements of δ are zero. Such a pre-trend might arise in practice if there are confounding
policy changes or other events close to the time of treatment. These different choices of δ

22We focus on the normal simulations in the main text since it allows for a tractable computation of the
optimal excess length of procedures that control size. In the supplementary material, we show that our
procedures perform similarly in simulations based on the empirical distribution in the original paper.

23In the supplementary material, we provide simulation results in which the parameter of interest is the
average causal effect in the post-treatment periods (θ “ τ̄post), with qualitatively similar results.

24For choices of ∆ that are convex (e.g., ∆SDpMq and ∆SDPBpMq), we benchmark the expected excess
length of our proposed confidence sets against a sharp optimal bound over confidence sets that satisfy the
uniform coverage requirement. This optimal bound is provided in the supplementary materials, and follows as
a corollary from results in Armstrong and Kolesar (2018a) on the optimal expected length of a confidence set
satisfying the uniform coverage requirement (10). For choices of ∆ that can be written as the union of convex
sets (e.g., ∆RM pM̄q and ∆SDRM pM̄q), we compare the expected excess length of our proposed confidence
sets against the maximal optimal bound over each set in the union, which is a potentially non-sharp bound
for any confidence set with correct coverage.
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Parallel Trends Pulse Pre-Trend
∆SDpMq ∆SDPBpMq ∆SDRMpM̄q ∆RMpM̄q

Conditional (and Hybrids)
Consistent X X X X
Asymptotically (near-)optimal X X X ˆ

FLCI
Consistent X ˆ ˆ ˆ

Asymptotically optimal X ˆ ˆ ˆ

Finite-sample near-optimal X ˆ ˆ ˆ

Table 1: Summary of expected properties for each simulation design

allow us to highlight the relative strengths of the proposed inference procedures, since FLCIs
have near-optimal expected length when δ “ 0 and ∆ “ ∆SDpMq, whereas the conditional
test has optimal local asymptotic power under the pulse design when ∆ “ ∆SDPBpMq.

In practice, we find that for ∆SDpMq and ∆SDPBpMq, the results depend on M but are
qualitatively similar across values of δ. By contrast, for ∆SDRMpM̄q and ∆RMpM̄q, the choice
of δ is more important than the choice of M̄ . Therefore, to highlight the most important
dimensions for each of the simulation designs, in the main text of the paper we report results
for ∆SDpMq and ∆SDPBpMq under different values ofM and δ “ 0 (parallel trends), whereas
for ∆RMpM̄q and ∆SDRMpM̄q we vary the magnitude of the pre-treatment pulse δ´1, holding
M̄ “ 1 constant. In the supplementary materials, we report results for additional choices of
the parameters.

We report results for four methods for constructing confidence sets: FLCIs, conditional
confidence sets, and two hybrid approaches that combine the conditional test with either
a least-favorable moment inequality test or FLCIs (see Remark 15).25 For ∆RMpM̄q and
∆SDRMpM̄q, we omit results for the FLCI and conditional-FLCI hybrid since the FLCIs
have infinite length. Table 1 summarizes which of our theoretical results hold for each of the
simulation designs.

5.2 Simulation Results

To compare results easily across the 12 papers in the simulation study, we normalize the
units of δ´1 andM by the standard deviation of β̂1 (denoted σ1). Comparative statics as the
normalized values of M or δ´1 grow large thus mimic the “small-Σ” asymptotics considered
above. In the graphs below, we report the median value of excess length efficiency across
the papers in the survey.

25We use a first-stage test of size κ “ α{10, following ARP and Romano et al. (2014).
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Figure 1: Simulation results for ∆SDpMq and ∆SDPBpMq: Median efficiency ratios for pro-
posed procedures.

Note: Median efficiency ratios for our proposed confidence sets over ∆SDpMq and ∆SDPBpMq under the
assumption of parallel trends and zero treatment effects (i.e., β “ 0). The efficiency ratio for a procedure is
defined as the efficiency bound divided by the procedure’s expected excess length. The results for the FLCI
are plotted in purple, the results for the conditional-FLCI (“C-F Hybrid”) confidence interval in red, the
results for the conditional-LF (“C-LF Hybrid”) hybrid in blue, and the results for the conditional confidence
interval in green. Results are averaged over 1000 simulations for each of the 12 papers surveyed, and the
median across papers is reported here.

Figure 2: Simulation results for ∆SDRMpM̄q and ∆RMpM̄q: Median efficiency ratios for
proposed procedures.

Note: Median efficiency ratios for our proposed confidence sets over ∆SDRM pM̄q and ∆RM pM̄q with M̄ “ 1
under the assumption of zero treatment effects and a “pulse” pre-trend (i.e., β´1 “ δ´1 and βt “ 0 for all
t ‰ ´1). The efficiency ratio for a procedure is defined as the efficiency bound divided by the procedure’s
expected excess length. The results for the conditional-least favorable (“C-LF”) hybrid are plotted in blue,
and the results for the conditional confidence interval in green. Results are averaged over 1000 simulations
for each of the 12 papers surveyed, and the median across papers is reported here.

Results for ∆SDpMq: The left panel of Figure 1 plots the efficiency ratio for each procedure
as a function ofM{σ1 when ∆ “ ∆SDpMq. All procedures perform well asM{σ1 grows large
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with efficiency ratios approaching 1, illustrating our asymptotic (near-)optimality results
for this design. However, the FLCIs perform best for smaller values of M{σ1, including
the point-identified case where M “ 0, illustrating the finite-sample near-optimality results
for the FLCIs when Assumption 2 holds. Although the conditional confidence sets have
efficiency approaching the optimal bound for M{σ1 large, their efficiency is only about 50%
when M{σ1 “ 0 (and thus Assumption 4 fails). The conditional-FLCI hybrid substantially
improves efficiency relative to the conditional for small values of M{σ1, while still retaining
near-optimal performance as M{σ1 grows large.

Results for ∆SDPBpMq: The right panel of Figure 1 plots the efficiency ratio for each
procedure as a function of M{σ1 when ∆ “ ∆SDPBpMq. The efficiency ratios for the condi-
tional and hybrid confidence sets are again (near-)optimal as M{σ1 grows large, highlighting
our asymptotic (near-)optimality results for these procedures in this simulation design. By
contrast, the efficiency ratios for the FLCIs steadily decrease as M{σ1 increases, reflecting
that the FLCIs are not consistent in this simulation design when M ą 0. The conditional-
FLCI hybrid again improves efficiency relative to the conditional when M{σ1 is small and
retains near-optimal performance as M{σ1 grows large.

Results for ∆SDRMpM̄q: The left panel of Figure 2 plots the efficiency ratios for the con-
ditional and conditional-least favorable hybrid confidence sets as a function of δ´1{σ1 when
∆ “ ∆SDRMpM̄q. We omit results for the FLCI and conditional-FLCI hybrid since the opti-
mal FLCI has infinite length for this design. Both procedures perform well as δ´1{σ1 grows
large with efficiency ratios approaching 1, illustrating our asymptotic (near-) optimality
result for this design. Both procedures also have similar power curves.

Results for ∆RMpM̄q: The right panel of Figure 2 plots the efficiency ratio for the con-
ditional and conditional-least favorable hybrid confidence sets as a function of δ´1{σ1 when
∆ “ ∆RMpM̄q. We again omit results for the FLCI and conditional-FLCI hybrid since the
optimal FLCI has infinite length for this design. The conditions for our asymptotic (near-)
optimality result for unions of convex sets do not hold in this simulation design (as the max-
imum pre-period violation is not unique). Nonetheless, we find that the conditional-least
favorable hybrid confidence set and the conditional confidence set perform quite well for
large values of δ´1{σ1, with efficiency ratios approaching about 83%. This is encouraging as
it shows that these procedures may perform well even in cases where the conditions of Corol-
lary 4.1 fail. Once again, we also find that the conditional and conditional-least favorable
hybrid have similar power.
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5.3 Practical Recommendations

Two clear patterns emerge from our simulations. First, the FLCIs have the best perfor-
mance for ∆SDpMq, particularly when M is small, which aligns with the finite-sample near-
optimality results in Section 3. Second, the conditional approach and its hybrid variants
outperform the FLCIs for other choices of ∆ where the consistency of the FLCIs is not
guaranteed.

We thus recommend the use of FLCIs for the case of ∆SDpMq, where FLCIs are consis-
tent and have good finite-sample properties, and recommend a moment-inequality approach
for more general forms of ∆ where consistency of the FLCIs is not guaranteed. The choice
between the conditional and hybrid approaches is somewhat more nuanced, as their perfor-
mance is quite similar in our simulation designs. We do find somewhat better performance
for the conditional-FLCI hybrid for ∆SDPBpMq, and thus recommend this approach for this
choice of ∆. For ∆RMpM̄q and ∆SDRMpM̄q, the FLCIs have infinite length, and we find
nearly identical performance for the conditional and conditional-least favorable hybrid. We
therefore tentatively recommend the least favorable hybrid approach following the recom-
mendations of ARP. We implement these recommendations in our applications in the next
section.

6 Empirical Applications

We recommend that applied researchers use our methods to conduct a sensitivity analysis
in which they construct robust confidence intervals for different choices of ∆. For example,
many of the ∆s described above have a parameter M (or M̄) that determines the informa-
tiveness of the pre-trends about the post-treatment differences in trends. It is natural to
report sensitivity to the parameter M , as well as the “breakdown” value at which particular
hypotheses of interest can no longer be rejected.26 This analysis makes transparent what
assumptions need to be placed on the relationship between the pre-trends and the coun-
terfactural post-treatment differences in trends in order to draw particular conclusions of
interest. We illustrate such a sensitivity analysis in applications to two recently published
papers.

26Similar “breakdown” concepts have been proposed in other settings with partial identification (Horowitz
and Manski, 1995; Kline and Santos, 2013; Masten and Poirier, 2020).
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6.1 Estimating the incidence of a value-added tax cut

Benzarti and Carloni (2019, henceforth, BC) study the incidence of a decrease in the value-
added tax (VAT) on restaurants in France. France reduced its VAT on sit-down restaurants
from 19.6 to 5.5 percent in July of 2009. BC analyze the impact of this change using
a dynamic difference-in-differences design that compares restaurants to a control group of
other market services firms that were not affected by the VAT change, estimating

Yit “
ÿ

s‰2008

βs ˆ 1rt “ ss ˆDi ` φi ` λt ` εit, (17)

where Yit is the log of (before-tax) profits for firm i in in year t; Di is an indicator for
whether firm i is a restaurant; φi and λt are firm and year fixed effects; and standard errors
are clustered at the regional level. BC’s main finding is that the VAT reduction had a large
effect on restaurant profits. Figure 3 shows the estimated event-study coefficients tβ̂su from
specification (17). We can formally reject the hypothesis that βpre “ 0 (p ă 0.01), although
visually there appears to be a jump in the coefficients following treatment.

Figure 3: Event-study coefficients tβsu for log profits, estimated using the event-study spec-
ification in (17).

The top left panel of Figure 4 shows a sensitivity analysis that plots robust confidence
sets for the treatment effect in 2009 using ∆SDpMq for different values ofM . The confidence
sets contain only positive values unless M exceeds 0.22. Thus, we can reject a null effect
on profits in 2009 if we are willing to restrict the slope of the differential trend to change
by no more than 22 log points between periods. To further contextualize these results, the
top right panel of the figure shows a sensitivity analysis using ∆SDRMpM̄q, from which we
see that the breakdown value of M̄ is about 1.5. This indicates that the significant effect
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is robust to allowing a non-linearity in the differential trend that is about 1.5 times the
maximum observed in the pre-treatment period. Similarly, the bottom left panel shows a
sensitivity analysis for ∆RMpM̄q, with a breakdown value of M̄ « 2, indicating that we
would have to allow the violation of parallel trends between 2008 and 2009 to be roughly
twice the magnitude of the maximal pre-treatment violation to include a null effect in our
confidence sets.

Figure 4: Sensitivity analysis for θ “ τ2009 for Benzarti and Carloni (2019)

We can further tighten our bounds by including context-specific information. Since the
VAT cut occurred at the same time that a payroll subsidy for restaurants was terminated,
BC write, “a conservative interpretation of our results is that we are estimating a lower bound
on the effect of the VAT cut on profits” (pg. 40). This argument may be made precise by
further imposing that the bias of the post-period event-study coefficients is negative. The
bottom right panel of Figure 4 imposes the additional constraint that the sign of the bias be
negative — that is, we set ∆ “ ∆SDNBpMq :“ ∆SDpMq X tδ : δpost ď 0u. With this added

30



constraint, the robust confidence sets now rule out effects on profits smaller than 15 log
points for all values of M , highlighting how our approach allows researchers to incorporate
informative context-specific knowledge to obtain more precise inference.

6.2 The effect of duty-to-bargain laws on long-run student out-

comes

Lovenheim and Willen (2019, henceforth LW) study the impact of state-level public sector
duty-to-bargain (DTB) laws, which mandated that school districts bargain in good faith
with teachers’ unions. LW examine the impacts of these laws on the adult labor market
outcomes of people who were students around the time that these laws were passed, compar-
ing individuals across different states and different birth cohorts to exploit the differential
timing of the passage of DTB laws across states. The authors estimate the following regres-
sion specification separately for men and women, using data from the American Community
Survey (ACS),

Ysct “
21
ÿ

r“´11

Dscrβr `X
1
sctγ ` λct ` φs ` εsct. (18)

Ysct is an average outcome for the cohort of students born in state s in cohort c in ACS cal-
endar year t. Dscr is an indicator for whether state s passed a DTB law r years before cohort
c turned age 18.27 The event-study coefficients tβ̂ru estimate the dynamic treatment effects
(or placebo effects) r years after DTB passage.28 The remaining terms include time-varying
controls, birth-cohort-by-ACS-year fixed effects, and state fixed effects. We normalize the
event-study coefficient β´2 to 0.29 We focus on the results where the outcome is employment.

Figure 5 plots the estimated event-study coefficients tβ̂ru from specification (18). In
the event-study for men (left panel), the pre-period coefficients are relatively close to zero,
whereas the longer-run post-period coefficients are negative. By contrast, the results for
women (right panel) suggest a downward-sloping pre-existing trend.

27Dsc,´11 is set to 1 if state s passed a law 11 years or more after cohort c turned 18. Likewise, Dsc,21 is
set to 1 if state s passed a law 21 or more years before cohort c turned 18.

28Treatment timing in LW is staggered, and therefore the results in Sun and Abraham (2020) imply that
βr can be interpreted as a sensible weighted average of causal effects under parallel trends only if treatment
effects are homogeneous across adoption cohorts. For simplicity, we focus on the robustness of the results
to violations of parallel trends using the original specification in LW, which is valid under the assumption
of homogeneous treatment effects. As discussed in Remark 1, our sensitivity analysis can also be applied to
estimators that are robust to treatment effect heterogeneity.

29LW normalize event time -1 to 0, but discuss how cohorts at event time -1 may have been partially
treated, since LW impute the year that a student starts school with error. Since our robust confidence sets
assume that there is no causal effect in the pre-period (τpre “ 0), we instead treat event-time -2 as the
reference period in our analysis.
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Figure 5: Event-study coefficient tβru for employment, estimated using the event-study
specification in (18).

Figure 6 reports results of a sensitivity analysis for the treatment effect on employment
for the cohort 15 years after the passage of a DTB law (as in Table 2 of LW), constructing
robust confidence sets under varying assumptions on the class of possible violations of parallel
trends. In blue, we plot the original OLS confidence intervals for β̂15 from specification (18).
In red, we plot FLCIs when ∆ “ ∆SDpMq for different values of M ; recall that M “ 0

corresponds with allowing only for linear violations of parallel trends, and larger values of
M allow for larger deviations from linearity. In the sensitivity analysis for men (left panel),
the FLCIs are similar to those from OLS when allowing for violations of parallel trends that
are approximately linear (M « 0), but become wider as we allow for more non-linearity; the

Figure 6: Sensitivity analysis for θ “ τ15 using ∆ “ ∆SDpMq
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breakdown value for a significant effect is M « 0.01. For women (right panel), the original
OLS estimates are negative and the confidence interval rules out 0. When we allow for linear
violations of parallel trends pM “ 0q, however, the picture changes substantially owing to
the pre-existing downward trend that is visible in Figure 5. Indeed, for M ă 0.01 the robust
confidence set contains only positive values. Intuitively, this is because the point estimate
for t “ 15 lies above a linear extrapolation of the negative pre-trend. Thus, if we were to
impose the same smoothness restrictions for men as for women, we would either have to
reconcile significant effects of opposite signs by gender (if M ă 0.01) or we would not be
able to rule out null effects for both genders pM ě 0.1q.

Sensitivity analyses using ∆RMpM̄q or ∆SDMBpM̄q do not allow us to obtain informa-
tive inference unless we are willing to impose that the post-treatment violations of parallel
trends (or changes in their slope) are substantially smaller than those in the pre-treatment
periods, with breakdown values of M̄ of 0.1 or less for both genders and both ∆s (see Ap-
pendix Figure D.1). We therefore consider a calibration exercise based on the magnitudes
of possible possible confounds: if violations of parallel trends were driven by confounding
changes in education quality, what would a given value of M imply about the evolution of
those confounds? Chetty, Friedman and Rockoff (2014) estimate that a 1 standard deviation
increase in teacher value-added (VA) corresponds with a 0.4 percentage point increase in
adult employment. Hence, a value of M “ 0.01 would correspond with allowing the slope of
the differential trend to change by the equivalent of a one-fourtieth of a standard deviation
of teacher VA across consecutive periods. Since the robust confidence sets for both men and
women begin to include zero around this value ofM , the strength with which we can rule out
a null effect depends on our assessment of the economic plausibility of such non-linearities.

7 Conclusion

This paper considers the problem of conducting inference in difference-in-differences and
related designs that is robust to violations of the parallel trends assumption. We introduce a
variety of restrictions on the class of possible differences in trends that formalize commonly
made arguments in empirical work. We provide inference procedures that are uniformly valid
so long as the difference in trends satisfies these restrictions, and derive novel results on the
power of these procedures. We recommend that applied researchers use our methods to
conduct formal sensitivity analyses, in which they report confidence sets for the causal effect
of interest under a variety of possible restrictions on the underlying trends. Such sensitivity
analyses make transparent what assumptions are needed in order to obtain informative
inference and help researchers assess whether those assumptions are plausible in a given
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setting.
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This online appendix contains proofs and additional results for the paper “An Honest
Approach to Parallel Trends” by Ashesh Rambachan and Jonathan Roth. Section A collects
together additional results that are referenced in the main text. Section B discusses a hybrid
approach using FLCIs and the conditional test. Section C contains proofs and auxiliary
lemmas for the results in the main text. The supplementary materials provide statements
and proofs of uniform asymptotic results along with additional simulation results.

A Additional Results

A.1 Optimal local asymptotic power of FLCIs

As discussed in Remark 9, the FLCIs have local asymptotic power converging to the power
envelope provided that Assumptions 3-4 are satisfied. We now formally state this result; the
proof is given in Section C.

Proposition A.1. Fix δA P ∆, τA P RT̄ and suppose Σ˚ is positive definite. Let θubA “

supθ Sp∆, δA` τAq be the upper bound of the identified set. Suppose that Assumption 4 holds
and δA,pre satisfies Assumption 3. Then, for any x ą 0 and α P p0, 0.5s,

lim
nÑ8

PpδA,τA,Σnq
ˆ

pθubA `
1
?
n
xq R CFLCIα,n

˙

“ lim
nÑ8

sup
Cα,nPIαp∆,Σnq

PpδA,τA,Σnq
ˆ

pθubA `
1
?
n
xq R Cα,n

˙

.

The analogous result holds replacing θubA `
1?
n
x with θlbA ´

1?
n
x, for θlbA the lower bound of the

identified set.

Thus, CFLCIα,n behaves similarly to CCα,n as nÑ 8 when both Assumptions 3-4 hold.

A.2 Connection to linear independence constraint qualification (LICQ)

We now draw connections between linear independence constraint qualification (LICQ) and
Assumption 4, under which the power of the conditional test converges to the power envelope
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asymptotically. We show that LICQ implies Assumption 4. Our discussion follows the
notation of Kaido et al. (2020).

Suppose ∆ “ tδ : Aδ ď du. Let mpτpost; βq “ Apβ ´Mpostτpostq ´ d, and let Tp∆, βq :“

tτpost : mpτpost; βq ď 0u be the identified set for the full parameter vector τpost. Define the
set of support points in direction p to be Spp,Tq :“ tτpost : p1τpost “ supτpostPT p

1τpostu.

Definition 2. The linear constraint qualification (LICQ) is satisfied in the direction p if,
for all support points in the direction p, the gradients of the binding constraints are linearly
independent. That is, for all τpost P Spp,Tq, the set tDτpostmjpτpost, βq : mjpτpost, βq “ 0u is
linearly independent, where Dτpost denotes the gradient with respect to τpost.

Our next result shows that LICQ in the directions l and ´l is equivalent to a slightly
stronger version of Assumption 4.

Lemma A.1. Suppose βA “ δA ` MpostτA,post for some δA P ∆ “ tδ : Aδ ď du and
τA,post P RT̄ . Then the following are equivalent: (i) LICQ is satisfied in the direction l; (ii)
For any solution δ˚˚ to the linear program

bminpδA,preq “ min
δ
l1δpost s.t. Aδ ď d, δpre “ δA,pre,

the matrix ApBpδ˚˚q,postq with rows corresponding with the binding inequality constraints at
δ˚˚ has rank |Bpδ˚˚q|. Analogous results hold replacing l with ´l in (i) and min with max

in (ii).

Proof. We first show (i) implies (ii). Let δ˚˚ be a solution to the minimization problem for
bmin. Let τ˚˚post “ βA,post ´ δ˚˚post. Observe that l1τ˚˚post “ l1βA,post ´ bminpδA,postq. From (7),
we then see that l1τ˚˚post “ θub and hence τ˚˚post P Spl,Tq. Now, note that by construction,
mpβA, τ

˚˚
postq “ ApβA ´Mpostτ

˚˚
post ´ dq “ Aδ˚˚ ´ d, so the binding constraints in mpβA, τ˚˚postq

correspond with the binding constraints in the minimization for bmin. Finally, observe that
DτpostmpβA, τ

˚˚
postq “ Ap¨,postq. It then follows from (i) that the rows of ApBpδ˚˚q,postq are linearly

independent, which gives the desired result.
Conversely, suppose τ˚˚post P Spl, τq. By definition, there exists some δ˚˚ P ∆ such that

δ˚˚ “ βA ´Mpostτ
˚˚
post, and l1τ˚˚post “ θub. Thus, θub “ l1βA,post ´ l1δ˚˚. It then follows from

(7) that l1δ˚˚ “ bminpδA,preq, so δ˚˚ is a solution to the optimization bmin. (ii) then implies
that ApBpδ˚˚,postq has linearly independent rows. By the same argument as earlier in the
proof, ApBpδ˚˚,postq corresponds with the matrix of gradients for the binding constraints in
mpβA, τ

˚˚
postq, from which we see that LICQ is satisfied.

Therefore, if LICQ holds in the directions l and ´l, then Assumption 4 is satisfied.
Indeed, if LICQ holds, then Lemma 4 implies that the rank condition in Assumption 4 holds
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for any solutions δ˚ and δ˚˚ to the problems bmax and bmin. By contrast, Assumption 4 only
requires the rank condition to hold for at least one solution to bmax and bmin. It is possible
for a linear program to have multiple solutions, and for the rows of the binding constraints
to be linearly independent (non-degenerate) for some solutions but not for others (e.g., see
Example 1 on p. 146 of Sierksma (2001)). Assumption 4 is thus potentially weaker than
LICQ if there are multiple solutions to the optimizations for bmax or bmin, but equivalent
when the solutions are unique.

B Conditional-FLCI Hybrid Confidence Sets

As discussed in Remark 15, ARP recommend a Bonferroni-type hybrid approach that uses
tests based on least-favorable critical values in combination with the conditional test. In this
section, we show that a similar hybrid approach can be applied using FLCIs in place of the
least-favorable tests.

The conditional-FLCI hybrid confidence set is constructed by first testing whether a
candidate parameter value lies within the level-p1 ´ κq optimal FLCI, and then applying a
conditional test to all parameter values that lie within the optimal FLCI. The second stage
uses a modified version of the conditional test that i) adjusts size to account for the first-stage
test, and ii) conditions on the event that the first-stage test fails to reject.

Formally, suppose that 0 ă κ ă α.30 Consider the level p1 ´ κq optimal FLCI, CFLCIκ,n “

an ` v1nβ̂n ˘ χn. Lemma B.2 below shows that the distribution of the test statistic η̂ de-
fined in (15) follows a truncated normal distribution conditional on the parameter value
θ̄ falling within the level p1 ´ κq optimal FLCI. With this result, the construction of the
second-stage of the conditional-FLCI hybrid test is analogous to the construction of the
conditional test, except it uses the modified size α̃ “ α´κ

1´κ
to account for the first-stage test.

The conditional-FLCI hybrid test ψC-FLCI
κ,α pβ̂n, θ̄, Σ̃nq rejects if and only if either θ̄ R CFLCIκ,n

or Fξ | ξPrvloC-FLCI ,v
up
C-FLCI s

pη̂q ą 1 ´ α̃, where Fξ | ξPrvloC-FLCI ,v
up
C-FLCI s

p¨q denotes the CDF of the
truncated normal distribution derived in Lemma B.2 below.

Since the FLCI controls size, the first stage test rejects with probability at most κ under
the null that θ “ θ̄. The second-stage test rejects with probability at most α̃ “ α´κ

1´κ

conditional on θ P CFLCIκ,n . Together, this implies that the conditional-FLCI hybrid test
controls size,

sup
δP∆,τ

sup
θ̄PSp∆,δ`τq

Epδ,τ,Σnq
”

ψC-FLCI
κ,α pβ̂n, θ̄, Σ̃nq

ı

ď α. (19)

30In practice, we set κ “ α{10 following Romano et al. (2014) and ARP, although the optimal choice of κ
is an interesting question for future research.
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We therefore construct a conditional-FLCI hybrid confidence set for the parameter θ that sat-
isfies (10) by inverting the conditional-FLCI test, denoting this confidence set as CC-FLCI

κ,α,n :“

tθ : ψC-FLCI
κ,α pβ̂n, θ̄, Σ̃nq “ 0u.

The following two results show that the conditional-FLCI hybrid confidence set inherits
some desirable asymptotic properties from the conditional approach: it is asymptotically
consistent, and under the same conditions as Proposition 4.2, the conditional-FLCI hybrid
test has local asymptotic power at least as good as the optimal α´κ

1´κ
test. (The proofs of

these results are provided in Section C.)

Proposition B.1 (Consistency). The conditional-FLCI hybrid test is consistent. For any
δA P ∆, τA P RT̄ , θout R Sp∆, δA ` τAq, α P p0, 0.5s, and κ P p0, αq,

lim
nÑ8

PpδA,τA,Σnq
`

θout R CC-FLCI
κ,α,n

˘

“ 1.

Proposition B.2 (Local asymptotic power). Fix δA P ∆, τA, and Σ˚ positive definite. Sup-
pose Assumption 4 holds. Suppose α P p0, 0.5s, κ P p0, αq, and let α̃ “ α´κ

1´κ
. Then,

lim inf
nÑ8

PpδA,τA,Σnq
ˆ

pθubA `
1
?
n
xq R CC-FLCI

κ,α,n

˙

ě lim
nÑ8

sup
Cα,nPIα̃p∆,Σnq

PpδA,τA,Σnq
ˆ

pθubA `
1
?
n
xq R Cα,n

˙

.

The analogous result holds replacing θubA `
1?
n
x with θlbA ´

1?
n
x, for θlbA the lower bound of the

identified set (although the constant c˚ may differ).

ARP show that a hybrid that uses least-favorable critical values in the first stage always
rejects when the size α̃ conditional test rejects. It is thus immediate that analogs of the
previous two propositions hold for the LF hybrid as well.

B.1 Auxiliary Lemmas for the Conditional-FLCI Hybrid Confidence

Sets

We now derive the truncated normal distribution used to construct the conditional-FLCI
hybrid confidence sets. We first provide a lemma that implies that the affine estimator at
which the optimal FLCI is centered can be written as an affine function of Aβ̂, where recall
that A is the matrix defining the polyhedral set, ∆ “ tδ : Aδ ď du.

Lemma B.1. Suppose ∆ “ tδ : Aδ ď du ‰ ∅, and pa, vq are such that b̄pa, vq ă 8. Then,
there exists ṽ such that v1 “ ṽ1A.

Proof. Note that
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b̄pa, vq “ max
δ,τpost

|v1pδ `Mpostτpostq ´ l
1τpost| s.t. Aδ ´ d ď 0.

We will show that if b̄pa, vq is finite, then for all δ̃ P ∆, Aδ̃ “ 0 implies v1δ̃ “ 0. This
implies that v is in the rowspace of A, from which the result follows. To prove this, suppose
towards contradiction that δ̃ is such that Aδ̃ “ 0 and v1δ̃ ‰ 0. Since Aδ̃ “ 0, it follows that
δc :“ pδ0` c ¨ δ̃q is in ∆ for any δ0 P ∆ and c P R. However, it then follows that for any fixed
τpost and δ0, the objective in the previous display can be made arbitrarily large at pδc, τpostq
by taking cÑ 8.

Consider the level 1 ´ κ optimal FLCI, CFLCIκ,n “ an ` v1nβ̂n ˘ χn. By Lemma B.1, there
exists some vector ṽn such that the level 1´κ optimal FLCI can be written as an`ṽ1nAβ̂n˘χn.
Since Ỹnpθq “ Aβ̂n ´ Ãp¨,1qθ ´ d, it follows that θ̄ P CFLCIκ,n if and only if

ṽ1nỸnpθ̄q ď χn ´ an ´ ṽ
1
nd` p1´ ṽ

1
nÃp¨,1qqθ̄q,

´ṽ1nỸnpθ̄q ď χn ` an ` ṽ
1
nd´ p1´ ṽ

1
nÃp¨,1qqθ̄q.

One can further show that p1 ´ ṽ1nÃp¨,1qqθ̄q “ 0, which simplifies the upper bounds above.31

Defining the matrix Ṽn “ pṽ1n,´ṽ1nq1 and the vector dnpθ̄q which stacks the upper-bounds of
the inequalities in the previous display, we see that the optimal level 1 ´ κ FLCI contains
the parameter value θ̄ if and only if V̄nỸnpθ̄q ď d̄npθ̄q.

With this equivalent representation of the optimal FLCI, we can now characterize the
distribution of the test statistic η̂ (15) conditional on the parameter θ falling within the
optimal FLCI.

Lemma B.2. η̂ |
!

γ˚ P V̂n, Sn “ s, θ̄ P CFLCIκ,n

)

„ ξ | ξ P rvloC-FLCI , v
up
C-FLCIs, where ξ „ N

´

γ1˚µ̃, γ
1
˚Σ̃nγ˚

¯

,
vloC-FLCI :“ maxtvlo, vloFLCIu, v

up
C-FLCI :“ mintvup, vupFLCIu; v

lo and vup are as defined in Sec-
tion 4.2, vloFLCI :“ max!

j:pṼncn,γ˚qjă0
)

d̄npθqj´pṼnSnqj

pṼncn,γ˚qj
, vupFLCI :“ min!

j:pṼncn,γ˚qją0
)

d̄npθqj´pṼnSnqj

pṼncn,γ˚qj
,

cn,γ˚ “
Σ̃nγ˚
γ1˚Σ̃nγ˚

and Sn “ pI ´ Σ̃nγ˚
γ1˚Σ̃nγ˚

γ1˚qỸnpθ̄q, and γ˚ is the vector of Lagrange multipliers
for the primal problem (16).

Proof. The proof follows an analogous argument to Lemma 9 in ARP. Recall that conditional
on γ˚ P V̂n, η̂ “ γ1˚Ỹn. Recall also that θ P CFLCIκ,n if and only if ṼnỸn ď d̄n. Observe that the
set of values of Ỹn such that

γ1˚Ỹn “
´

max γ1Ỹn s.t. γ ě 0, γ1Ãp¨,´1q “ 0, γ1σ̃n “ 1
¯

and ṼnỸn ď d̄n

31Applying the definitions of Ã and ṽn, we obtain that ṽ1nÃp¨,1q “ v1n,postΓ
´1e1. However, we show in the

proof to Lemma C.19 that vn,post “ l, so ṽ1nÃp¨,1q “ l1Γ´1e1. The result then follows from the fact that
e11Γ “ l1 by construction.
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is convex. This follows from the fact that if the expression above holds for both Ỹn and Ỹ ˚n ,
then γ1˚Ỹn ě γ1Ỹn and γ1˚Ỹ ˚n ě γ1Ỹ ˚n for all γ feasible in the maximization. It then follows
that γ1˚pαỸ ˚n `p1´αqỸnq ě γ1pαỸ ˚n `p1´αqỸnq for any α P p0, 1q. Thus, pαỸ ˚n `p1´αqỸnq is
also equal to the maximum. It is likewise clear that the second constraint holds for a convex
combination of Ỹn and Ỹ ˚n .

Thus, once we condition on Sn, the set of values of γ1˚Ỹn such that γ˚ P V̂n and ṼnỸn ď d̄n

is an interval. It thus suffices to find the endpoints. Without loss of generality, we focus on
the lower bound. For ease of notation, let F :“ tγ ě 0, γ1Ãp¨,´1q “ 0, γ1σ̃n “ 1u denote the
feasible region for the maximization. Then we are interested in

min
tỸn:Sn“su

"

γ1˚Ỹn : γ1˚Ỹn “ max
γPF

γ1Ỹn , ṼnỸn ď d̄n

*

.

Recalling that Sn “ pI ´ cn,γ˚γ1˚qỸn for cn,γ˚ “
Σ̃nγ˚
γ1˚Σ̃nγ˚

, the expression becomes

min
tỸn:Sn“su

"

γ1˚Ỹn : γ1˚Ỹn “ max
γPF

γ1
´

s` cn,γ˚γ
1
˚Ỹn

¯

, ṼnỸn ď d̄n

*

,

which is equivalent to

min

""

x : x “ max
γPF

γ1 ps` cn,γ˚xq

*

X

!

γ1˚Ỹn : Ỹn s.t. Sn “ s, ṼnỸn ď d̄n

)

*

.

However, the first set in the minimization above is the interval rvlo, vups, and the polyhedral
lemma in Lee, Sun, Sun and Taylor (2016) (Lemma 5.1) implies that second set is the
interval rvloFLCI , v

up
FLCIs. Thus, the expression above is maxtvlo, vloFLCIu, as desired. The

argument for the lower bound of the interval is analogous. Finally, the independence of γ1˚Ỹn
and Sn implies that the distribution of γ1˚Ỹn conditional on

!

γ˚ P V̂n, Sn “ s, θ̄ P CFLCIn,κ

)

is
truncated normal.

C Proofs of Finite Sample Normal Results

C.1 Proofs of Main Finite Sample Normal Results

Throughout the proofs, we will use the following notation. Let Ỹ pβ̂n, A, d, θ̄q :“ Aβ̂n ´ d ´

Ãp¨,1qθ̄. Define ψCα pβ̂n;A, d, θ̄,Σq :“ ψCα pỸ pβ̂n;A, d, θ̄q, AΣA1q to be an indicator for whether
the conditional test constructed using pβ̂n, A, d, θ̄,Σq rejects. For a matrix A, we use ApB,¨q
to denote the sub-matrix of A defined by the index B.
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Proof of Lemma 2.2

Proof. By equation (8), we can write the coverage requirement as

inf
δP∆,τ

inf
k

inf
θPSp∆k,δ`τq

Ppδ,τ,Σnq

˜

θ P
ď

k1

Cn,k1
¸

,

which is bounded below by

inf
δP∆,τ

inf
k

inf
θPSp∆k,δ`τq

Ppδ,τ,Σnq pθ P Cn,kq ,

which is at least 1´ α since Cn,k satisfies (10) for ∆ “ ∆k.

Proof of Proposition 3.2

Proof. First, suppose Assumption 3 holds. Without loss of generality, we show P
`

pθub ` xq P CFLCIα,n

˘

Ñ

0 for any x ą 0. By Lemma C.20 there exists pā, v̄q such that b̄pā, v̄q “ 1
2
LIDp∆, δpreq “: b̄min

and EpδA,τA,Σnq
”

ā` v̄1β̂n

ı

“ 1
2
pθub ` θlbq “: θmid. Let C̄n :“ ā ` v̄1β̂n ˘ χnpā, v̄q denote the

fixed length confidence interval based on pā, v̄q.
By construction, χ̄n :“ χnpā, v̄q is the 1´α quantile of the |N

`

b̄min, σ
2
v̄,n

˘

| distribution.
Since σ2

v̄,n “
1
n
σ2
v̄,1 Ñ 0, the |N

`

b̄min, σ
2
v̄,n

˘

| distribution collapses to a point mass at b̄min,
and thus χ̄n Ñ b̄min. By construction the length of the shortest FLCI χn :“ χnpan, vnq

must be less than or equal to χ̄n, and so lim supnÑ8 χn ď b̄min. Let bn :“ b̄pan, vnq be the
worst-case bias of the optimal FLCI. Since α P p0, .5s, Lemma C.21 implies that χn ě bn.
Additionally, Lemma C.19 implies that bn ě 1

2
LIDp∆, δpreq “ b̄min, and thus χn ě b̄min.

Hence, χn Ñ b̄min implies bn Ñ b̄min. Additionally, note that for α P p0, 0.5s, χnpa, vq is
increasing in both b̄pa, vq and σv,n. Since b̄min ď bn and χn ď χ̄n, it must be that σvn,n ď σv̄,n,
from which it follows that σvn,n Ñ 0.

Now, we claim that µn :“ EpδA,τA,Σnq
”

an ` v
1
nβ̂n

ı

converges to θmid :“ 1
2
pθub ` θlbq. To

show this, note that µn “ an ` v1nβA for βA “ δA ` τA. Since θub, θlb P Sp∆, βAq, by the
definition of the identified set there exist δub, δlb P ∆ and τub, τ lb such that βA “ δub ` τub “

δlb ` τ lb, θub “ l1τubpost, and θlb “ l1τ lbpost. Thus, θub ´ Epδub,τub,Σnq
”

an ` v
1
nβ̂n

ı

“ θub ´ µn and

Epδlb,τ lb,Σnq
”

an ` v
1
nβ̂n

ı

´ θlb “ µn ´ θlb. This implies that bn ě maxtθub ´ µn, µn ´ θlbu “

b̄min ` |µn ´ θ
mid|, where the equality uses the fact that θub ´ θlb “ LIDp∆, δA,preq “ 2b̄min.

Since we’ve shown that bn Ñ b̄min, it follows that µn Ñ θmid, as desired.
Next, note that if β̂n „ N pδA ` τA, Σnq, then an ` v1nβ̂n „ N

`

µn, σ
2
vn,n

˘

. Observe that
θ̄ P CFLCIα,n if and only if an ` v1nβ̂n P rθ̄ ´ χn, θ̄ ` χns. Thus,
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PpδA,τA,Σnq
`

θ̄ P CFLCIα,n

˘

“ Φ

ˆ

θ̄ ` χn ´ µn
σvn,n

˙

´ Φ

ˆ

θ̄ ´ χn ´ µn
σvn,n

˙

.

Now, recalling that θub “ θmid` b̄min by construction, we have PpδA,τA,Σnq
`

pθub ` xq P CFLCIα,n

˘

equals

Φ

ˆ

θmid ` b̄min ` x` χn ´ µn
σvn,n

˙

´ Φ

ˆ

θmid ` b̄min ` x´ χn ´ µn
σvn,n

˙

. (20)

Note that the term inside the second normal CDF in the previous display equals

´
χn ´ bn
σvn,n

`
x` θmid ´ µn ` b̄min ´ bn

σvn,n
.

However, the first summand above is bounded between ´z1´α{2 and ´z1´α by Lemma C.21.
Additionally, we’ve shown that θmid ´ µn Ñ 0 and b̄min ´ bn Ñ 0, so the numerator of the
second summand converges to x ą 0. Since the denominator σvn,n Ñ 0, the expression in the
previous display diverges to 8, and hence the second normal CDF term in (20) converges to
1, which implies that P

`

pθub ` xq P CFLCIα,n

˘

Ñ 0, as needed.
Conversely, suppose Assumption 3 fails. Let LA :“ LIDp∆, δA,preq and L̄ :“ supδ̃preP∆pre

LIDp∆, δ̃preq.
By Lemma C.19, bn :“ b̄pan, vnq ě

1
2
L̄ “: b̄min. As argued earlier in the proof, since

α P p0, .5s, χn ě bn “
1
2
L̄. If L̄ “ 8, then CFLCIα,n is the real line, and thus never rejects,

so CFLCIα,n is trivially inconsistent under the assumption that Sθp∆, δA ` τAq ‰ R. For the
remainder of the proof, we assume LA ă L̄ ă 8. From Lemma 2.1, SpδA`τA,∆q “ rθlb, θubs,
where θub ´ θlb “ LIDp∆, δA,preq “ LA. Let ε “ 1

4
pL̄ ´ LAq, and set θout1 :“ θub ` ε and

θout2 :“ θlb´ ε. Let θmid “ 1
2
pθub` θlbq be the midpoint of the identified set. By construction,

θout1 ´ θmid “ θmid ´ θout2 “ 1
2
LA ` ε ă 1

2
L̄. Since CFLCIα,n is an interval with half-length at

least 1
2
L̄, it follows that if θmid P CFLCIα,n then at least one of θout1 , θout2 is also in CFLCIα,n . Hence,

P
`

θout1 P CFLCIα,n

˘

`P
`

θout2 P CFLCIα,n

˘

ě P
`

θmid P CFLCIα,n

˘

ě 1´α, where the final bound follows
since CFLCIα,n has correct coverage. It follows that lim supnÑ8 P

`

θoutj P CFLCIα,n

˘

ě 1
2
p1´αq ą 0

for at least one j P t1, 2u.

Proof of Proposition 4.1

Proof. Lemma 2.1 showed that the identified set is an interval, SpδA ` τA,∆q “ rθlb, θubs,
and so if θout R SpδA ` τA,∆q, then we must have either θout “ θub ` x or θout “ θlb ´ x for
some x ą 0. Without loss of generality, consider the case θout “ θub ` x, so

lim inf
nÑ8

PpδA,τA,Σnq
`

θout R CCα,n
˘

“ lim inf
nÑ8

EpδA,τA,Σnq
”

ψCα pβ̂n;A, d, θub ` x,Σnq

ı

.
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Lemma C.2 along with Σn “
1
n
Σ˚ imply ψCα pβ̂n;A, d, θub`x,Σnq “ ψCα p

?
nβ̂n;A,

?
nd,

?
nθub`

?
nx,Σ˚q. Thus,

lim inf
nÑ8

PpδA,τA,Σnq
`

θout R CCα,n
˘

“ lim inf
nÑ8

Ep?nδA,?nτA,Σ˚q
”

ψCα pβ̂n;A,
?
nd,

?
nθub `

?
nx,Σ˚q

ı

,

where we further used that β̂n „ N pβA, Σnq implies
?
nβ̂n „ N p

?
nβA, Σ˚q. Lemma C.1

implies that
?
nθub “ θubn , for θubn “ supSp

?
nδA `

?
nτA,∆nq and ∆n “ tδ : Aδ ď

?
ndu. It

follows from Lemma C.18 that

Ep?nδA,?nτA,Σ˚q
”

ψCα pβ̂n;A,
?
nd,

?
nθub `

?
nx,Σ˚q

ı

ě ρLBp
?
nx,Σ˚q,

for ρLB a function with limx̃Ñ8 ρLBpx̃,Σ
˚q “ 1. It is immediate from the previous two

displays that limnÑ8 PpδA,τA,Σnq
`

θout R CCα,n
˘

“ 1 as desired.

Proof of Proposition 4.2

Proof. We show that each of the limits in the proposition equals Φpc˚x ´ z1´αq. Following
the same steps as proof of Proposition 4.1, the first limit of interest can be written as

lim
nÑ8

PpδA,τA,Σnq
ˆ

pθub `
1
?
n
xq R CCα,n

˙

“ lim
nÑ8

Ep?nδA,?nτA,Σ˚q
”

ψCα pβ̂n;A,
?
nd, θubn ` x,Σ

˚
q

ı

.

The term on the right-hand side converges to Φpc˚x´ z1´αq by Lemma C.8.
We next turn to the second limit. Consider testing H0 : δ P ∆ “ tδ : Aδ ď du, θ “ θ̄

against H1 : pδ, τq “ pδA, τAq. Observe that the null is equivalent to H0 : β P B0pθ̄q :“

tβ : Dτpost s.t. l1τpost “ θ̄, Aβ ´ d ´ AMpostτpost ď 0u and the alternative is equivalent to
H1 : β “ δA ` τA “: βA. It is clear from the definition of B0 that it is convex. From Lemma
C.5, the most powerful test that controls size is a one-sided t-test (Neyman-Pearson test)
that rejects for large values of pβA ´ β̃nq1Σ´1

n β̂n, where β̃ :“ arg minβPB0
||βA ´ β||Σn . Define

ψMP
α pβ̂n;A, d, θ̄,Σn, δA, τAq to be an indicator for whether the Neyman-Pearson test rejects
H0 in favor H1 given a draw β̂n that is assumed to be normally distributed with covariance
Σn. The second limit can thus be written as

lim
nÑ8

sup
Cα,nPIαp∆, 1

n
Σ˚q

PpδA,τA,Σnq
ˆ

pθub `
1
?
n
xq R Cα,n

˙

“

lim
nÑ8

EpδA,τA,Σnq
„

ψMP
α pβ̂n;A, d, θub `

1
?
n
x,Σn, δA, τAq


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From Lemma C.6 and the fact that Σn “
1
n
Σ˚, ψMP

α pβ̂n;A, d, θub ` 1?
n
x,Σn, δA, τAq “

ψMP
α p

?
nβ̂n;A,

?
nd,

?
nθub ` x,Σ˚,

?
nδA,

?
nτAq. It follows that

lim
nÑ8

sup
Cα,nPIαp∆,Σnq

PpδA,τA,Σnq
ˆ

pθub `
1
?
n
xq R Cα,n

˙

p1q
“

Ep?nδA,?nτA,Σ˚q
”

ψMP
α pβ̂n;A,

?
nd,

?
nθub ` x,Σ˚,

?
nδA,

?
nτAq

ı

p2q
“

Ep?nδA,?nτA,Σ˚q
”

ψMP
α pβ̂n;A,

?
nd, θubn ` x,Σ

˚,
?
nδA,

?
nτAq

ı

p3q
Ñ Φpc˚x´ z1´αq,

where (1) used that if β̂n „ N
`

βA,
1
n
Σ˚

˘

, then
?
nβ̂n „ N p

?
nβA, Σ˚q, (2) used that

θubn “
?
nθub and (3) follows by Lemma C.12.

Proof of Corollary 4.1

Proof. Let CC,kα,n be the conditional confidence set for ∆k. Proposition 4.2 implies that

lim
nÑ8

PpδA,τA,Σnq
ˆ

pθubA `
1
?
n
xq R CC,1α,n

˙

“ lim
nÑ8

sup
Cα,nPIαp∆1,Σnq

PpδA,τA,Σnq
ˆ

pθubA `
1
?
n
xq R Cα,n

˙

ě lim
nÑ8

sup
Cα,nPIαp∆,Σnq

PpδA,τA,Σnq
ˆ

pθubA `
1
?
n
xq R Cα,n

˙

where the inequality follows from the fact that Iαp∆,Σnq Ď Iαp∆1,Σnq since Spβ,∆1q Ď

Spβ,∆q. To complete the proof, we will show that

lim
nÑ8

PpδA,τA,Σnq
ˆ

pθubA `
1
?
n
xq R CC,1α,n

˙

“ lim
nÑ8

PpδA,τA,Σnq

˜

pθubA `
1
?
n
xq R

ď

k

CC,kα,n

¸

,

for which it suffices to show that for all k ą 1,

lim
nÑ8

PpδA,τA,Σnq
ˆ

pθubA `
1
?
n
xq R CC,kα,n

˙

“ 1.

Since SpδA ` τA,∆kq Ĺ SpδA ` τA,∆1q, we have from equation (8) that θubA is strictly larger
than the upper bound of SpδA`τA,∆kq. The convergence in the previous display then follows
almost immediately from Proposition 4.1. The one technical complication is that rather
than a fixed point outside the identified set, we are considering power against a sequence
converging to a fixed point outside the identified set. It is, however, straightforward to verify
that the argument in Proposition 4.1 applies if we replace θub`x with θub`x`Opn´1{2q.

Proof of Proposition A.1
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Proof. Following the same argument as in the proof to Proposition 3.2, we can show that
PpδA,τA,Σnq

´

pθub ` x?
n
q P CFLCIα,n

¯

equals

Φ

˜

θmid ` b̄min `
x?
n
` χn ´ µn

σvn,n

¸

´ Φ

˜

θmid ` b̄min `
x?
n
´ χn ´ µn

σvn,n

¸

, (21)

where b̄min “ 1
2
LIDp∆, δA,preq, µn “ an` v

1
npδA` τAq, and θmid is the midpoint of Sp∆, δA`

τAq.
The term inside the second normal CDF in the previous display equals

´
χn ´ bn
σvn,n

`
x

?
nσvn,n

`
θmid ´ µn ` b̄min ´ bn

σvn,n
. (22)

We first show the first term in (22) converges to ´z1´α. Since χn is the 1´α quantile of the

|N
`

bn, σ
2
vn,n

˘

| distribution, Φ

ˆ

χn ´ bn
σvn,n

˙

´ Φ

ˆ

´χn ´ bn
σvn,n

˙

“ 1 ´ α. Lemma C.25 implies

that b̄min “ 1
2

supδ̃pre LIDp∆, δ̃preq ą 0. We argued in the proof to Proposition 3.2 that

bn ě b̄min ą 0, χn ě 0, and σvn,n Ñ 0, from which we see that
´χn ´ bn
σvn,n

Ñ ´8. It follows

that Φ

ˆ

χn ´ bn
σvn,n

˙

Ñ 1´ α, and hence
χn ´ bn
σvn,n

Ñ z1´α.

Next, we show the second term in (22) converges to c˚x, for the same constant c˚ as in
Proposition 4.2. Lemma C.23 implies that limnÑ8

x
?
nσvn,n

“ limnÑ8
x

?
nσv̄,n

“
x

σv̄,1
, where

v̄ is the unique value such that there exists pā, v̄q with b̄pā, v̄q “ b̄min. Moreover, Lemma
C.22 implies that 1{σv̄,1 “ c˚, from which we see that the limit of the second term is c˚x, as
desired.

Now, we show the third term in (22) converges to 0. We argued in the proof to Proposition

3.2 that |µn ´ θmid| ď bn ´ b̄min. It thus suffices to show that
bn ´ b̄min
σvn,n

Ñ 0. Lemma C.22

implies that there is a unique pair pā, v̄q such that b̄pā, v̄q “ b̄min. Let χ̄n “ χnpā, v̄q and
χn “ χnpan, vnq. Note that χn ď χ̄n by construction, and bn ě b̄min by Lemma C.19. Hence,
using the bounds from Lemma C.21, we have that bn`σvn,nz1´α ď χn ď χ̄n “ σv̄,ncvα

´

b̄min
σv̄,n

¯

,
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which, along with the inequality bn ě b̄min, implies that

0 ď
bn ´ b̄min
σvn,n

ď
σv̄,n
σvn,n

cvα

ˆ

b̄min
σv̄,n

˙

´

ˆ

z1´α `
b̄min
σvn,n

˙

“

„

cvα

ˆ

b̄min
σv̄,n

˙

´

ˆ

z1´α `
b̄min
σv̄,n

˙

`

„ˆ

σv̄,n
σvn,n

´ 1

˙

cvα

ˆ

b̄min
σv̄,n

˙

´

ˆ

b̄min
σvn,n

´
b̄min
σv̄,n

˙

.

The first bracketed expression in the upper bound above converges to 0 by Lemma C.24.
Applying the upper bound from Lemma C.21 to the cvα term in the second bracketed expres-

sion, we obtain that the second bracketed expression is bounded above by
ˆ

σv̄,n
σvn,n

´ 1

˙

z1´α{2,

which converges to 0 by Lemma C.23.
Combining the results above, we see that the expression in (22) converges to c˚x ´

z1´α. It follows that lim supnÑ8 P
´

pθub ` x?
n
q P CFLCIα,n

¯

ď 1 ´ Φpc˚x ´ z1´αq, and hence

lim infnÑ8 P
´

pθub ` x?
n
q R CFLCIα,n

¯

ě Φpc˚x´z1´αq. Proposition 4.2 gives that Φpc˚x´z1´αq

is the optimal local asymptotic power over procedures that control size, from which the result
follows.

Proof of Proposition B.1

Proof. The proof follows from the same argument as for Proposition 4.1, replacing Lemma
C.2 with Lemma C.4, and Lemma C.16 with Lemma C.17.

Proof of Proposition B.2

Proof. By an invariance to scale argument analogous to that in the proof of Proposition 4.2,
lim infnÑ8 PpδA,τA,Σnq

´

pθubA `
1?
n
xq R CC-FLCI

κ,α,n

¯

equals

lim inf
nÑ8

Ep?nδA,?nτA,Σ˚q
”

ψC-FLCI
κ,α pβ̂n, A,

?
nd, θubn ` x,Σ

˚
q

ı

.

From Proposition 4.2, it thus suffices to show

lim inf
nÑ8

Ep?nδA,?nτA,Σ˚q
”

ψC-FLCI
κ,α pβ̂n, A,

?
nd, θubn ` x,Σ

˚
q

ı

ě

lim inf
nÑ8

Ep?nδA,?nτA,Σ˚q
”

ψCα̃ pβ̂n, A,
?
nd, θubn ` x,Σ

˚
q

ı

.

Note that the second stage of the test ψC-FLCI
κ,α is nearly identical to ψCα̃ except it uses

vloC-FLCI :“ maxtvlo, vloFLCIu and vupC-FLCI :“ mintvup, vupFLCIu instead of vlo and vup. Since
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Fξ : ξPrvlo,vupspη̂q is decreasing in vlo and vup, it suffices to show that vloFLCI
Pn
Ñp ´8, where Pn

denotes the sequence of distributions under which pδ, τ,Σq “ p
?
nδA,

?
nτA,Σ

˚q.
Let ∆n “ tδ : Aδ ď

?
ndu. Let vn “ vnp∆n,Σ

˚q and v̆n “ vnp∆,Σnq. Define an and
ăn, and χ̆n and χn analogously. By Lemma C.3, vn “ v̆n, an “

?
năn, χn “

?
nχ̆n, and

b̄pa, v; ∆nq “
?
nb̄pă, v̆,∆q. We argued in the proof to Lemma C.23 that v̆n Ñ v̄. Further,

we showed in the proof to Lemma C.22 that v̄ “ ´γ̄A, where γ̄´B “ 0 and γ̄B is the unique
vector such that γ̄1BÃpB,1q “ 1, γ̄1BÃpB,´1q “ 0. Likewise, we argued in the proof to Lemma
C.23 that ăn Ñ ā, for ā the unique value such that b̄pā, v̄; ∆q “ bminp∆q. We also showed in
the proof to Proposition 3.2 that χ̆n Ñ bminp∆q.

Let ṽn be a vector such that ṽ1nA “ v1 (which exists by Lemma B.1). Observe that

ṽ1nΣ̃γ̄ “ ṽ1nAΣ˚A1γ̄ Ñ v̄1Σ˚A1γ̄ “ ´γ̄1AΣ˚A1γ̄ “ ´γ̄1Σ̃γ̄,

where we use ṽ1nA “ vn, vn Ñ v̄ “ ´γ̄1A as shown above, and the identity Σ̃ “ AΣ˚A1.
Now, Lemma C.27 implies that there is a constant c ą 0 such that, with probability ap-

proaching one under Pn, c¨γ̄ is an optimal vertex of the dual problem for ψC-FLCI
κ,α pβ̂n, A,

?
nd, θubn `

x,Σ˚q. Observe from Lemma B.2 that if γ˚ is an optimal vertex, and
v1nΣ̃γ˚

γ1˚Σ̃γ˚
ă 0, then the

value of vloFLCI used in ψC-FLCI
κ,α pβ̂n, A,

?
nd, θubn ` x,Σ

˚q is

vloFLCI “
dn,1 ´ ṽ

1
n

´

I ´ Σ̃γ˚
γ1˚Σ̃γ˚

γ1˚

¯

Ỹn

ṽ1nΣ̃γ˚{γ1˚Σ̃γ˚
“
´pṽ1nỸn ´ dn,1q

v1nΣ̃γ˚{γ1˚Σ̃γ˚
` γ1˚Ỹn, (23)

where Ỹn “ Aβ̂n ´
?
nd ´ Ãp¨,1qpθ

ub
n ` xq. Since cγ̄ is optimal in the dual with probability

approaching one under Pn, and
v1nΣ̃cγ̄

c2γ̄1Σ̃γ̄
Ñ ´

1

c
ă 0 (24)

by the argument above, we have that with probability approaching 1 under Pn,

vloFLCI “
´pṽ1nỸn ´ dn,1q

v1nΣ̃cγ̄{c2γ̄1Σ̃γ̄
` cγ̄1Ỹn. (25)

Now, we showed in the proof to Lemma C.8 that Ep?nδA,?nτA,Σ˚q
”

Y̆n,B

ı

“ ´ÃpB,1qx

regardless of n, where Y̆n “ Ỹn ´ Ãp¨,´1qp
?
nτ̃ub1 q for a vector τ̃ub1 . Since γ̄´B “ 0 and

γ̄1BÃpB,´1q “ 0, it follows that Ep?nδA,?nτA,Σ˚q
”

γ̄1Ỹn

ı

“ ´γ̄1BÃpB,1qx regardless of n. Thus,

cγ̄1Ỹn
Pn
„ N

´

´cγ̄1BÃpB,1qx, c
2γ̄1Σ̃γ̄

¯

. (26)
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Now, note that by construction, ṽ1nỸn ´ dn,1 “ an ` v1nβ̂ ´ pθ
ub
n ` xq ´ χn. Further, we

have that β̂n
Pn
„ N p

?
nβA, Σ˚q, where βA “ δA ` τA. It follows that under Pn, ṽ1nỸn ´ dn,1 “

an ` v
1
n

?
nβA ´ pθ

ub
n ` xq ´ χn ` v

1
nξ, where ξ „ N p0, Σ˚q. Applying the equalities vn “ v̆n,

a “
?
năn, χn “

?
nχ̆ derived above, along with the fact that θubn “

?
nθub1 by Lemma C.1,

we see that under Pn,

ṽ1nỸn ´ d̃1 “
?
n
`

ăn ` v̆
1
nβA ´ θ

ub
1 ´ χ̆n

˘

´ x` v̆1nξ, (27)

Since v̆1n Ñ v̄, it follows that v̆1nξ Ñd v̄
1ξ by Slutsky’s lemma.

Additionally, the results above imply that ăn` v̆1nβA´θub1 ´χ̆n Ñ ā` v̄1βA´θ
ub
1 ´ b̄minp∆q.

We claim that this limit is strictly negative. Since Assumption 4 holds, Lemma C.25 implies
that LIDp∆, δAq ą 0. Hence, for ε ą 0 sufficiently small, we have that θub1 ´ ε P Sp∆, βAq. If
the limit above were weakly positive, then we would have ā` v̄1βA´pθub1 ´ εq´ b̄minp∆q ą 0.

However, this implies that b̄pā, v̄q ą b̄minp∆q, which is a contradiction. The limit must thus
be strictly negative, as desired. We then see from (27) that

ṽ1nỸnpθ
ub
n ` xq ´ dn,1

Pn
Ñp ´8. (28)

Displays (24), (25), (26), and (28) together give that vloFLCI
Pn
Ñp ´8, as desired.

C.2 Auxiliary Lemmas for Finite Sample Normal Results

Lemma C.1 (Scale Invariance of Identified Set). For any n ą 0, let ∆n “ tδ : Aδ ď
?
ndu. Fix δA P ∆1 and τA. Then, Sp

?
nδA `

?
nτA,∆nq “

?
nSpδA ` τA,∆1q. This

implies θubn “
?
nθub1 , where θubn :“ supθ Sp

?
nδA `

?
nτA,∆nq, and θlbn “

?
nθlb1 , for θlbn :“

infθ Sp
?
nδA `

?
nτA,∆nq

Proof. Let Sn “ Sp
?
nδA `

?
nτA,∆nq and βA “ δA ` τA. By definition, θ̄n P Sn iff there

exists a vector τpost P RT̄ such that l1τpost “ θ̄n and Ap
?
nβA ´Mpostτpost ´

?
ndq ď 0. Using

the change of basis described in Section 4.1, it follows that θ̄n P Sn iff there exists τ̃n P RT̄´1

such that
A
?
nβA ´

?
nd´ Ãp¨,1qθ̄n ´ Ãp¨,´1qτ̃n ď 0. (29)

Thus, θ̄1 P S1 iff there exists τ̃1 such that

AβA ´ d´ Ãp¨,1qθ̄1 ´ Ãp¨,´1qτ̃1 ď 0. (30)

If there exists a τ̃1 such that (30) holds for θ̄1, then multiplying both sides of (30) by
?
n
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implies that (29) holds with θ̄n “
?
nθ̄1 and τ̃n “

?
nτ̃1. Likewise, if there exists a τ̃n such

that (29) holds for θ̄n, then multiplying both sides of (29) by 1?
n
implies that (30) holds with

θ̄1 “
1?
n
θ̄n and τ̃1 “

1?
n
τ̃n. The desired result follows immediately.

Lemma C.2 (Scale Invariance of Conditional Test). For any n ą 0 and pβ̂;A, d, θ̄,Σq,
ψCα pβ̂;A, d, θ̄,Σq “ ψCα p

?
nβ̂;A,

?
nd,

?
nθ̄, nΣq.

Proof. Using the change of basis described in Section 4.1, the test statistic used to calculate
ψCα pβ̂;A, d, θ̄,Σq is

min
η,τ̃

η s.t Aβ̂ ´ d´ Ãp¨,1qθ̄ ´ Ãp¨,´1qτ̃ ď ησ̃,

where σ̃ is the vector containing the square roots of the diagonal elements of Σ̃ “ AΣA1.
Since multiplying the constraints by

?
n does not change the feasible set, this optimization

is equivalent to

min
η,τ̃

η s.t. A
?
nβ̂ ´

?
nd´ Ãp¨,1q

?
nθ̄ ´ Ãp¨,´1q

?
nτ̃ ď η

?
nσ̃.

However, since τ̃ enters only in the constraint, and t
?
nτ̃ : τ̃ P RT̄´1u “ tτ̃ P RT̄´1u, this

linear program is equivalent to

min
η,τ̃

η s.t A
?
nβ̂ ´

?
nd´ Ãp¨,1q

?
nθ̄ ´ Ãp¨,´1qτ̃ ď η

?
nσ̃,

which is the test statistic used to calculate ψCα p
?
nβ̂;A,

?
nd,

?
nθ̄, nΣq. Thus, the test statis-

tics used for the two problems are the same. Additionally, the feasible set for the dual for the
unscaled problem is F1 “ tγ : γ1Ãp¨,´1q “ 0, γ1σ̃ “ 1, γ ě 0u, whereas for the problem scaled
by
?
n it is Fn “ tγ : γ1Ãp¨,´1q “ 0, γ1

?
nσ̃ “ 1, γ ě 0u “ 1?

n
F1. It follows that Vn “ 1?

n
V1,

for V1 and Vn respectively the vertices of F1 and Fn. Moreover, it is immediate that if γ1 is
an optimal vertex of the unscaled problem, then γn “ 1?

n
γ1 will be an optimal vertex of the

problem scaled by
?
n.

Recall that the critical value for the conditional test depends on γ1˚Σ̃γ˚, where γ˚ is an
optimal vertex, and the values vlo and vup which are functions of γ˚, Σ̃, and a sufficient
statistic S. However, for γn “ 1?

n
γ1, we have that γ1npnΣ̃qγn “

1?
n
γ11pnΣ̃q 1?

n
γ1 “ γ11Σ̃γ1, and

so the variances are the same. Let Ỹ1 “ Aβ̂´d´Ãp¨,1qθ̄ and Ỹn “ A
?
nβ̂´

?
nd´Ãp¨,1q

?
nθ̄ “

?
nỸ1. The sufficient statistic used to construct vlo and vup in the first problem is S1 “ pI ´

Σ̃γ1γ11
γ11Σ̃γ1

qỸ1, whereas for the second problem it is Sn “ pI´ nΣ̃γnγ1n
γ1nnΣ̃γn

qỸn. The identities Ỹn “
?
nỸ1

and γ1 “
?
nγn immediately imply that Sn “

?
nS1. The values vlo and vup for the first
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problem are then the minimum and maximum of C1 “ tc : c “ maxγ̃1PV1 γ̃
1
1pS1 `

Σ̃γ1

γ11Σ̃γ1
cqu.

Likewise, the values vlo and vup for the second problem are the the minimum and maximum
of Cn “ tc : c “ maxγ̃nPVn γ̃

1
npSn `

nΣ̃γn
γ1nnΣ̃γn

cqu, However, since Vn “
?
nV1, Sn “

?
nS1, and

γn “
1?
n
γ1, we have that for any c,

max
γ̃1PV1

γ̃11pS1 `
Σ̃γ1

γ11Σ̃γ1

cq “ max
γ̃nPVn

?
nγ̃1np

1
?
n
Sn `

Σ̃
?
nγn

γ1nnΣ̃γn
cq “ max

γ̃nPVn
γ̃1npSn `

nΣ̃γn

γ1nnΣ̃γn
cqu,

from which it is immediate that C1 “ Cn, and hence the values of vlo and vup are the
same across the two problems as well. Since the test statistics and critical values of the two
problems are the same, they are equivalent.

Lemma C.3 (Scale Invariance for FLCIs). Let vnp∆,Σnq be the vector vn used in the optimal
FLCI as defined in Section 3, making the dependence on p∆,Σnq explicit. Define, χnp∆,Σnq,
anp∆,Σnq, and b̄np∆,Σnq analogously. Let Σn “

1
n
Σ˚ and ∆n “

?
n∆. Then

1. vnp∆n,Σ
˚q “ vnp∆,

1
n
Σnq

2. anp∆n,Σ
˚q “

?
nanp∆,

1
n
Σnq

3. χnp∆n,Σ
˚q “

?
nχnp∆,

1
n
Σnq

4. b̄panp∆n,Σ
˚q, vnp∆n,Σ

˚q; ∆nq “
?
nb̄panp∆,Σnq, vnp∆,Σnq; ∆q.

Proof. We show in the proof to Lemma C.19 that b̄pa, v; ∆nq is finite only if vpost “ l, in
which case b̄pa, v; ∆q “ maxδP∆ |a` v

1δ|. Likewise, b̄p
?
na, v; ∆nq is finite only if vpost “ l, in

which case

b̄p
?
na, v; ∆q “ max

δnP∆n

|
?
na` v1δn| “ max

δP∆
|
?
na` v1

?
nδ| “

?
nb̄pa, v,∆q.

Next, observe that using the invariance above and Σn “
1
n
Σ˚,

χp
?
na, v; Σ˚,∆nq “

?
v1Σ˚v ¨ cvα

ˆ

b̄p
?
na, v; ∆n
?
v1Σ˚v

˙

“
?
n ¨

a

v1Σnv ¨ cvα

ˆ

b̄pa, v; ∆q
?
v1Σnv

˙

“
?
nχpa, v; Σ˚,∆q.

It is then immediate that if pa˚, v˚q “ arg minpa,vq χpa, v; ∆,Σnq, then p
?
na˚, v˚q “ arg minpa,vq

χpa, v; ∆n,Σ
˚q, from which the first two results follow. The second two results then follow

from the two invariances derived above.
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Lemma C.4 (Scale Invariance for FLCI Hybrid). For any n ą 0 and pβ̂;A, d, θ̄,Σq,

ψC-FLCI
κ,α pβ̂;A, d, θ̄,Σq “ ψC-FLCI

κ,α p
?
nβ̂;A,

?
nd,

?
nθ̄, nΣq.

Proof. From Lemma C.3, if CFLCIκ pβ̂;A, d, θ̄,Σq “ a1`v
1
1β̂˘χ1, then CFLCIκ p

?
nβ̂;A,

?
nd,

?
nθ̄,
?
nΣq “

?
n
´

a1 ` v
1
1β̂ ˘ χ1

¯

. Thus, θ̄ P CFLCIκ pβ̂;A, d, θ̄,Σq iff
?
nθ̄ P CFLCIκ p

?
nβ̂;A,

?
nd,

?
nθ̄,
?
nΣq,

so the first stage tests are equivalent. The second stage test is almost identical to ψCα̃ , which
is invariant to scale by Lemma C.2, except it replaces vlo with maxtvlo, vloFLCIu and vup with
mintvup, vupFLCIu. It thus suffices to show that vloFLCI and vupFLCI are invariant to scale. We
show in the proof to Lemma C.2 that Sn “

?
nS1, and if γn P V̂n then γ1 “

?
nγn P V̂n;

where objects subscripted by 1 indicate values based on pβ̂;A, d, θ̄,Σq and values subscripted
by n indicate those based on p

?
nβ̂;A,

?
nd,

?
nθ̄,
?
nΣq. Additionally, Lemma C.3 implies

that Ṽ1 “ Ṽn, and d̄n “
?
nd̄n. The desired invariance is then immediate from the formulas

in Lemma B.2.

Lemma C.5. Suppose β̂ „ N pβ, Σq for Σ known. Let B0 be a closed, convex set. Then
the most-powerful size α test of H0 : β P B0 against the point alternative HA : β “ βA

is equivalent to the most powerful test of H0 : β “ β̃ against HA : β “ βA, where β̃ “
arg minβ ||β ´ βA||Σ and || ¨ ||Σ is the Mahalanobis norm in Σ, ||x||Σ “

?
x1Σ´1x. The most

powerful test rejects for values of pβA´ β̃q1Σ´1β̂ greater than pβA´ β̃q1Σ´1β̃`z1´α||βA´ β̃||Σ,
and has power against the alternative of Φp||βA ´ β̃||Σ ´ z1´αq, for z1´α the 1 ´ α quantile
of the standard normal.

Proof. Define ă ¨, ¨ ąΣ by ă x, y ąΣ“ x1Σ´1y, and observe that ă ¨, ¨ ąΣ is an inner product.
The result then follows immediately from the discussion in Section 2.4.3 of Ingster and Suslina
(2003), replacing all instances of the usual euclidean inner product with ă ¨, ¨ ąΣ.

Lemma C.6 (Scale Invariance of Optimal Test). Suppose ∆ “ tδ : Aδ ď du. As in the
proof to Proposition 4.2, let ψMP

α pβ̂;A, d, θ̄,Σ, δA, τAq be an indicator for whether the most
powerful (Neyman-Pearson) test between the null hypothesis H0 : δ P ∆, θ “ θ̄ and the
alternative HA : pδ, τq “ pδA, τAq rejects the null, given the realization β̂ which is assumed to
come from a normal distribution with variance Σ. Then for any n ą 0,

ψMP
α pβ̂;A, d, θ̄,Σ, δA, τAq “ ψMP

α p
?
nβ̂;A,

?
nd,

?
nθ̄, nΣ,

?
nδA,

?
nτAq

Proof. As argued in the proof to Proposition 4.2, the null H0 : δ P ∆, θ “ θ̄ is equivalent to
the null H0 : β P B0pθ̄, dq :“ tβ : Dτpost s.t. l1τpost “ θ̄, Aβ ´ d´ AMpostτpost ď 0u. Likewise,
the alternative that pδ, τq “ pδA, τAq is equivalent to HA : β “ δA` τA “: βA. It is clear from
the definition that B0 is convex. Thus, by Lemma C.5, the most powerful test of H0 against
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HA when the covariance of β̂ is Σ is a t-test that rejects for large values of pβA ´ β̃1q
1Σ´1β̂,

where β̃1 “ arg minβPB0pθ̄,dq ||βA´β||Σ. Its critical value is pβA´ β̃q
1Σ´1β̃1` z1´α||βA´ β̃1||Σ,

for z1´α the 1´ α quantile of the standard normal distribution.
Similarly, the null hypothesis δ P tδ : Aδ ď

?
ndu, θ “

?
nθ̄ is equivalent to H0 : β P

B0p
?
nθ̄,
?
ndq “ tβ : Dτpost s.t. l1τpost “

?
nθ̄, Aβ ´

?
nd ´ AMpostτpost ď 0u. Likewise, the

alternative that pδ, τq “ p
?
nδA,

?
nτAq is equivalent to HA : β “

?
nδA `

?
nτA “

?
nβA. It

is clear from the definition that B0p
?
nθ̄,
?
ndq is convex. Thus, by Lemma C.5, the most

powerful test of H0 against HA when the covariance of β̂ is nΣ is a t-test that rejects for
large values of p

?
nβA ´ β̃2q

1pnΣq´1β̂, where β̃2 “ arg minβPB0p
?
nθ̄,
?
ndq ||

?
nβA ´ β||pnΣq. Its

critical value is p
?
nβA ´ β̃2q

1pnΣq´1β̃2 ` z1´α||βA ´ β̃2||pnΣq.
Now, define

ηpβ̂, A, d, θ̄,Σq :“ min
η,τ̃

η s.t. Aβ̂ ´ d´ Ãp¨,1qθ̄ ´ Ãp¨,´1qτ̃ ď ησ̃, (31)

where σ̃ is the square root of the diagonal elements of AΣA1. It follows immediately from
the definition of B0 and the function η that we can write

B0pθ̄, dq “ tβ : ηpβ,A, d, θ̄,Σq ď 0u

B0p
?
nθ̄,
?
ndq “ tβ : ηpβ,A,

?
nd,

?
nθ̄, nΣq ď 0u

As argued in the proof to Lemma C.2 above, for any n ą 0, ηpβ,A, d, θ̄,Σq “ ηp
?
nβ,A,

?
nd,

?
nθ̄, nΣq,

from which it follows that
?
nB0pθ̄, dq “ B0p

?
nθ̄,
?
ndq. Thus,

β̃2 “
?
n arg min
βPB0pθ̄,dq

||
?
nβA ´

?
nβ||pnΣq

“
?
n arg min
βPB0pθ̄,dq

||βA ´ β||Σ “
?
nβ̃1,

where the second equality uses the fact that ||
?
nx||pnΣq “ ||x||Σ. Thus, the test statistic

used for ψMP
α p

?
nβ̂;A,

?
nd,

?
nθ̄,
?
nδA,

?
nτAq is

p
?
nβA ´ β̃2q

1
pnΣq´1

p
?
nβ̂q “ p

?
nβA ´

?
nβ̃1q

1
pnΣq´1

p
?
nβ̂q “ pβA ´ β̃1q

1Σ´1β̂,

which is the test statistic used for ψMP
α pβ̂;A, d, θ̄, δA, τAq.
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Likewise, the critical value used for ψMP
α p

?
nβ̂;A,

?
nd,

?
nθ̄,
?
nδA,

?
nτAq is

p
?
nβA ´ β̃2q

1
pnΣq´1β̃2 ` z1´α||

?
nβA ´ β̃2||pnΣq “

p
?
nβA ´

?
nβ̃1q

1
pnΣq´1

?
nβ̃1 ` z1´α||

?
nβA ´

?
nβ̃1||pnΣq “

pβA ´ β̃1q
1Σ´1β̃1 ` z1´α||βA ´ β̃1||Σ,

which is the critical value used for ψMP
α pβ̂;A, d, θ̄, δA, τAq. We have thus shown that the test

statistics and critical values for the two tests align, which gives the desired result.

Lemma C.7 (Rank of binding moments). Suppose Assumption 4 holds. Let θub :“ supθ Sp∆, δA`
τAq and βA “ δA ` τA. Then there exists a vector τ̃ub P RT̄´1 such that for B “ Bpδ˚˚q as
defined in Assumption 4,

ApB,¨qβA ´ dB ´ ÃpB,1qθ
ub
´ ÃpB,´1qτ̃

ub
“ 0

Ap´B,¨qβA ´ d´B ´ Ãp´B,1qθ
ub
´ Ãp´B,1qτ̃

ub
“ ´ε ă 0,

for ε a vector with strictly positive entries. Additionally, the matrix ÃpB,´1q has rank equal
to |B| ´ 1, and tγB : γ1BÃpB,´1q “ 0u “ tcγ̄B : c P Ru for a non-zero vector γ̄B ě 0.

Proof. From (7), we have that θub “ l1βA,post ´ l
1δ˚˚post, for δ˚˚ a solution to

min
δ
l1δpost s.t. Aδ ď d, δpre “ δA,pre. (32)

Let B “ Bpδ˚˚q index the binding inequalities of the optimization above at δ˚˚, so that

ApB,¨qδ
˚˚
´ dB “ 0 (33)

Ap´B,¨qδ
˚˚
´ d´B “ ´ε ă 0. (34)

By Assumption 4, ApB,postq has rank |B|.
Now, let τ˚˚ “ pδA,post ` τA,postq ´ δ˚˚post. Since by construction θub P Sθp∆, βAq, we have

˜

δ˚˚pre

δ˚˚post ` τ
˚˚

¸

“

˜

δA,pre

δA,post ` τA,post

¸

“ βA.
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It follows that

Aδ˚˚ “ AβA ´ AMpostτ
˚˚

“ AβA ´ AMpostΓ
´1Γτ˚˚

“ AβA ´ Ãp¨,1qpl
1τ˚˚q ´ Ãp¨,´1qΓp´1,¨qτ

˚˚

“ AβA ´ Ãp¨,1qpθ
ub
q ´ Ãp¨,´1qτ̃

ub,

where the third equality uses the definition of Ã and the fact that the first row of Γ is l1; and
the fourth equality uses the fact that θub “ l1ppδA,post ` τA,postq ´ δ˚˚postq “ l1τ˚˚ and defines
τ̃ub :“ ´Γp´1,¨qτ

˚˚. The first result then follows immediately from the previous display along
with (33) and (34).

To show the second set of results, note that ÃpB,¨q “ ApB,postqΓ
´1. Since ApB,postq has rank

|B| by assumption and Γ´1 is full rank, ÃpB,¨q also has rank |B|. This implies that ÃpB,´1q

has rank of either |B| ´ 1 or |B|. To show that the rank must be |B| ´ 1, note that the
optimization (32) can be re-written as

min
δpost

l1δpost s.t. Ap¨,postqδpost ď d´ Ap¨,preqδA,pre. (35)

Since the optimization is assumed to have a finite solution, it is equivalent to its dual for-
mulation,

max
γ

γ1pAp¨,preqδA,pre ´ dq s.t. ´ γ1Ap¨,postq “ l1, γ ě 0.

Let γ̄ be a solution to the dual problem. Since γ̄ is feasible in the dual, ´γ̄1Ap¨,postq “
l1 and γ̄ ě 0. Additionally, by the complementary slackness conditions, it must be that
γ̄´B “ 0. Hence, we have ´γ̄1BApB,postq “ l1. Multiplying on the right by Γ´1, we obtain
´γ̄1BÃpB,¨q “ l1Γ´1. Recall that by construction the first row of Γ is l1, so l1 “ e11Γ, and thus
´γ̄1BÃpB,¨q “ l1Γ´1 “ e11. This shows, however, that γ̄B is in the nullspace of Ã1

pB,´1q but
not in the null space of Ã1

pB,¨q. It follows that the rank of ÃpB,´1q is strictly less than that
of ÃpB,¨q, and thus must be equal to |B| ´ 1. Since ÃpB,´1q has |B| rows and rank |B| ´ 1,
by the rank nullity theorem the set tγB : γ1BÃpB,´1q “ 0u must be one dimensional. We’ve
shown that γ̄1BÃpB,´1q “ 0, and γ̄B ‰ 0 since γ̄1BApB,postq “ ´l1 ‰ 0, which implies that
tγB : γ1BÃpB,´1q “ 0u “ tcγ̄B : c P Ru, as needed.

Lemma C.8 (Limiting power of conditional test). Let ∆ “ tδ : Aδ ď du, and fix δA P ∆,
τA, and Σ˚ positive definite. If Assumption 4 holds, then for any x ą 0,
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Ep?nδA,?nτA,Σ˚q
”

ψCα pβ̂n;A,
?
nd, θubn ` x,Σ

˚
q

ı

Ñ 1´ Φpz1´α ´ c
˚xq,

where θubn :“ supSp∆n,
?
nδA `

?
nτAq, ∆n “ tδ : Aδ ď

?
ndu, and c˚ is a positive

constant (not depending on x or α). In particular, c˚ “ ´γ̄1BÃpB,1q{σB, where σB “
b

γ̄1BApB,¨qΣ
˚A1

pB,¨qγ̄B and γ̄B is the unique vector such that γ̄1BÃpB,´1q “ 0, γ̄B ě 0, ||γ̄B|| “ 1.

Proof. From Lemma C.7, there exists a vector τ̃ub1 and a set of indices B such that

ApB,¨qβA ´ dB ´ ÃpB,1qθ
ub
1 ´ ÃpB,´1qτ̃

ub
1 “ 0 (36)

Ap´B,¨qβA ´ d´B ´ Ãp´B,1qθ
ub
1 ´ ÃpB,´1qτ̃

ub
1 “ ´ε ă 0, (37)

and the set tγB P R|B| : γ1BÃpB,´1q “ 0u “ tcγ̄B : c P Ru for some non-zero vector
γ̄B ě 0, which without loss of generality we can normalize so that ||γ̄B|| “ 1. Let σ̃ be the
vector containing the square roots of the diagonal elements of AΣ˚A1. It follows that the set
tγB P R|B| : γ1BÃpB,´1q “ 0, γ1Bσ̃B “ 1, γB ě 0u is a singleton. In particular, its lone element
is γ˚B :“ pσ̃1Bγ̄Bq

´1γ̄B. Note that pσ̃1Bγ̄Bq´1 is well-defined since γB ě 0 and has at least one
strictly positive element, and σ̃ ą 0 since by assumption A has no all-zero rows and Σ˚ is
positive definite.

Now, consider ψCα pβ̂n, ApB,¨q,
?
ndB, θ

ub
n ` x,Σ˚q, the conditional test that uses only the

moments in B. The test statistic for the conditional test that uses only the moments in B is

ηpβ̂n, ApB,¨q,
?
ndB, θ

ub
n ` x,Σ

˚
q “ min

η,τ̃
η

s.t. ApB,¨qβ̂n ´
?
ndB ´ ÃpB,1qpθ

ub
n ` xq ´ ÃpB,´1qτ̃ ď ησ̃B.

The equivalent dual problem is

max
γB

γ1BỸB,n s.t. γ1BÃpB,´1q “ 0, γ1Bσ̃B “ 1, γB ě 0,

where ỸB,n “ ApB,¨qβ̂n ´
?
ndB ´ ÃpB,1qpθ

ub
n ` xq. We have shown, however, that there is a

single value, γ˚B, that satisfies the constraints of the dual problem, and so the solution to
the problem in the previous display is γ˚1B ỸB,n. Additionally, since the set of dual vertices
is a singleton, the conditioning event that γ˚B is optimal is trivial, so vlo “ ´8 and vup “
8. It follows that the conditional test using only the moments B is a one-sided t-test
that rejects for large values of γ˚1B ỸB,n. Specifically, the critical value is z1´ασ

˚
B, for σ˚B “

b

γ˚1BApB,¨qΣ
˚A1

pB,¨qγ
˚
B the standard deviation of the test statistic γ˚1B ỸB,n. We claim that

σ˚B ą 0. To see why this is the case, observe that Assumption 4 implies that ApB,¨q has full
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row rank, and by construction γ˚B ‰ 0, so γ˚1BApB,¨q ‰ 0. That σ˚B ą 0 then follows from the
fact that Σ˚ is positive definite.

Additionally, observe that

Ep?nδA,?nτA,Σ˚q
”

γ˚1B ỸB,n

ı

“ γ˚1B

”

ApB,¨q
?
nβA ´

?
ndB ´ ÃpB,1qpθ

ub
n ` xq

ı

“ γ˚1B
?
n
”

ApB,¨qβA ´ dB ´ ÃpB,1qθ
ub
1

ı

´ γ˚1B ÃpB,1qx

“ γ˚1B r
?
nÃpB,´1qτ̃

ub
1 s ´ γ

˚1
B ÃpB,1qx “ ´γ

˚1
B ÃpB,1qx

where the second equality uses θubn “
?
nθub1 from Lemma C.1, the third equality uses (36)

to substitute for the term in brackets, and the final equality follows from the fact that
γ˚1B ÃpB,´1q “ 0 by construction. Thus, regardless of n, the conditional test using only the
moments in B rejects with probability

Ep?nδA,?nτA,Σ˚q
”

ψCα pβ̂n, ApB,¨q,
?
ndB, θ

ub
n ` x,Σ

˚
q

ı

“ 1´Φpz1´α´p´γ
˚1
B ÃpB,1q{σ

˚
Bq ¨xq. (38)

Note also that we showed in the proof of Lemma C.7 that ´γ̄1BÃpB,¨q “ e11, which implies
that ´γ̄1BÃpB,1q “ 1, and hence c˚ :“ ´γ̄˚1B ÃpB,1q{σ

˚
B ą 0 since γ˚B is a positive multiple of

γ̄B. Moreover, observe that if we define σB “
b

γ̄1BApB,¨qΣ
˚A1

pB,¨qγ̄B, then γ̄
˚
B{σ

˚
B “ γ̄B{σB,

so c˚ “ ´γ̄1BÃpB,1q{σB.
Recall that ψCα pβ̂n;A,

?
nd, θubn `x,Σ

˚q “ ψCα pỸn, AΣ˚A1q for Ỹn “ Aβ̂n´
?
nd´Ãp¨,1qpθ

ub
n `

xq. Since the conditional test optimizes over τ̃ , and τ̃ appears in this optimization only in
the term Ãp¨,´1qτ̃ , the result of the conditional test using Ỹn is equivalent to the result of the
conditional test that replaces Ỹn with Y̆n “ Ỹn ´ Ãp¨,´1qp

?
nτ̃ub1 q (see Lemma 16 in ARP for

a formal justification). That is, ψCα pỸn, AΣ˚A1q “ ψCα pY̆n, AΣ˚A1q. The expectation of the
elements of Y̆n corresponding with the rows B is

Ep?nδA,?nτA,Σ˚q
”

Y̆n,B

ı

“ ApB,¨q
?
nβA ´

?
ndB ´ ÃpB,1qpθ

ub
n ` xq ´ ÃpB,´1qp

?
nτ̃ub1 q

“
?
n
´

ApB,¨qβA ´ dB ´ ÃpB,1qθ
ub
1 ´ ÃpB,´1qτ̃

ub
1

¯

´ ÃpB,1qx

“ ´ÃpB,1qx,

where the second line uses the fact that θubn “
?
nθub1 from Lemma C.1, and the third uses

(36). Similarly, the expectation of the elements of Y̆n corresponding to the rows other than
B is
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Ep?nδA,?nτA,Σ˚q
”

Y̆n,´B

ı

“ Ap´B,¨q
?
nβA ´

?
nd´B ´ Ãp´B,1qpθ

ub
n ` xq ´ Ãp´B,1qp

?
nτ̃ub1 q

“
?
n
´

Ap´B,¨qβA ´ d´B ´ Ãp´B,1qθ
ub
1 ´ Ãp´B,1qτ̃

ub
1

¯

´ Ãp´B,1qx

“
?
np´εq ´ Ãp´B,1qx,

where the last line uses (37). Since ´ε ă 0, all of the elements of E
”

Y̆n,´B

ı

converge to ´8

as n Ñ 8, whereas E
”

Y̆n,B

ı

does not depend on n. It follows from Proposition 3 in ARP
that the conditional test based on the full set of moments is equal to the conditional test
that only uses the moments B with probability approaching one,

lim
nÑ8

Pp?nδA,?nτA,Σ˚q
´

ψCα pβ̂n;A,
?
nd, θubn ` x,Σ

˚
q “ ψCα pβ̂n, ApB,¨q,

?
ndB, θ

ub
n ` x,Σ

˚
q

¯

“ 1.

This, combined with (38), gives the desired result.

Lemma C.9. Let B be a closed, convex subset of RK, and βA R B. Let β̃ “ arg minβPB ||β´

βA||Σ, where ||x||2Σ “ x1Σ´1x for some positive definite matrix Σ. Then for any β P B,
pβ̃ ´ βAq

1Σ´1pβ ´ β̃q ě 0.

Proof. Consider any β P B. Define βθ “ θpβ´ β̃q` β̃, and note that since B is convex βθ P B
for any θ P r0, 1s. Further,

||βθ ´ βA||
2
Σ “ θ2

||β ´ β̃||2Σ ` 2θpβ̃ ´ βAq
1Σ´1

pβ ´ β̃q ` ||β̃ ´ βA||
2
Σ.

Differentiating with respect to θ, we have

B

Bθ
||βθ ´ βA||

2
Σ “ 2θ||β ´ β̃||2Σ ` 2pβ̃ ´ βAq

1Σ´1
pβ ´ β̃q,

from which we see that the derivative evaluated at θ “ 0 is 2pβ̃ ´ βAq
1Σ´1pβA ´ β̃q. Since β̃

minimizes the norm, it follows that we must have 2pβ̃ ´ βAq
1Σ´1pβA ´ β̃q ě 0, else we could

achieve a lower value of the norm at βθ by choosing θ sufficiently small.

Lemma C.10. Let B “ tβ P RK : v1β ď du for some v P RKzt0u and d P R. Let
β̃ “ arg minβPB ||β´βA||Σ for some βA R B, where ||x||2Σ “ x1Σ´1x and Σ is positive definite.
Then pβA ´ β̃q1Σ´1 “ c ¨ v1 for the positive constant c “ v1βA´d?

v1Σv
.

Proof. Note that we can form a basis v, ṽ2, ..., ṽK such that v1ṽj “ 0 for j “ 2, ..., K. It
follows by construction that for any j “ 2, .., K and any t P R, β̃ ` t ¨ ṽj P B. Hence, from
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Lemma C.9, ´pβA ´ β̃q1Σ´1ptṽjq ě 0. Since we can choose t both positive and negative, it
follows that pβA´ β̃q1Σ´1ṽj “ 0 for all j. Since pβA´ β̃q1Σ´1 is orthogonal to tṽ2, ..., ṽKu, and
tv, ṽ2, ..., ṽKu form a basis, we have that pβA ´ β̃q1Σ´1 “ c ¨ v1, for some c P R. Multiplying
both sides of the equation on the right by Σv, we obtain that pβA´ β̃q1v “ c ¨v1Σv. However,
since β̃ is the closest point to βA in Mahalanobis distance, it must be on the boundary of B,
and so v1β̃ “ d. It follows that c “ pv1βA ´ dq{pv1Σvq, which is clearly positive since βA R B
and thus v1βA ą d.

Lemma C.11 (Power of optimal test for linear subspace). Let B “ tβ P RK : v1β ď du

for some v P RKzt0u and d P R. Suppose β̂ „ N pβ, Σq for Σ positive definite known, and
consider the problem of testing H0 : β P B against HA : β “ βA for some βA R B. Then the
most powerful size-α test of H0 against HA is a one-sided t-test that rejects for large values
of v1β̂, and has power equal to Φppv1βA ´ dq{

?
v1Σv ´ z1´αq.

Proof. From Lemma C.5, the most powerful test rejects for large values of pβA ´ β̃q1Σ´1β̂,
where β̃ “ arg minβPB ||β ´ βA||Σ, and has power Φp||βA ´ β̃||Σ ´ z1´αq. By Lemma C.10,
pβA ´ β̃q

1Σ´1 “ cv1, for c “ pv1βA ´ dq{pv1Σvq. It follows that

||βA ´ β̃||
2
Σ “ pβA ´ β̃q

1Σ´1
pβA ´ β̃q

“ cv1pβA ´ β̃q

“ cpv1βA ´ dq “ pv
1βA ´ dq

2
{pv1Σvq,

where we use the fact that v1β̃ “ d, since β̃ must be on the boundary of B, as argued in the
proof to Lemma C.10. The result then follows immediately.

Lemma C.12 (Asymptotic Power Envelope). Let ∆ “ tδ : Aδ ď du, and fix δA P ∆, τA,
and Σ˚ positive definite. If Assumption 4 holds, then for any x ą 0,

Ep?nδA,?nτA,Σ˚q
”

ψMP
α pβ̂n;A,

?
nd, θubn ` x,Σ

˚
q

ı

Ñ 1´ Φpz1´α ´ c
˚xq,

where ψMP
α is as defined in the proof to Proposition 4.2, θubn :“ supSp∆n,

?
nδA `

?
nτAq,

∆n “ tδ : Aδ ď
?
ndu, and c˚ is the same positive constant as in Lemma C.8.

Proof. As argued in the proof to Lemma C.6, the null hypothesis H0 : θ “ θ̄, δ P tAδ ď du is
equivalent to the nullH0 : β P B0pθ̄, dq “ tβ : Dτpost s.t. l1τpost “ θ̄, Aβ´d´AMpostτpost ď 0u,
which we showed in Lemma C.6 to be equivalent to B0pθ̄, dq “ tβ : ηpβ,A, d, θ̄,Σ˚q ď 0u

for the function η as defined in (31). Thus, the null hypothesis for the test associated with
ψMP
α pβ̂n;A,

?
nd, θubn ` x,Σ˚q can be written as H0 : βn P Bn,0 :“ tβ : ηpβ,A,

?
nd, θubn `

x,Σ˚q ď 0u. Under the alternative for this test, βn “
?
nβA, so by Lemma C.5 the most
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powerful test uses the test statistic p
?
nβA ´ β̃nq

1Σ˚´1β̂n, where β̃n “ arg minβPBn,0 ||β ´
?
nβA||Σ˚ .
Now, from Lemma C.7, there exists a vector τ̃ub1 and a set of indices B such that

ApB,¨qβA ´ dB ´ ÃpB,1qθ
ub
1 ´ ÃpB,´1qτ̃

ub
1 “ 0 (39)

Ap´B,¨qβA ´ d´B ´ Ãp´B,1qθ
ub
1 ´ ÃpB,´1qτ̃

ub
1 “ ´ε ă 0, (40)

where tγB P R|B| : γ1BÃpB,´1q “ 0u “ tcγ̄B : c P Ru for some non-zero vector γ̄B ě 0. Define
BBn :“ tβ : ηpβ,ApB,¨q,

?
ndB, θ

ub
n ` x,Σ˚q ď 0u, the analog to Bn,0 that restricts attention

only to the set of moments B. By an argument analogous to that in the proof to Lemma
C.8 (replacing Ŷ with µ), we can show that ηpβ,ApB,¨q,

?
nd, θubn ` x,Σ˚q “ γ˚1BµB,npβq,

where µB,npβq “ ApB,¨qβ ´
?
ndB ´ ÃpB,1qpθ

ub
n ` xq and γ˚B “ pγ̄1Bσ̃q

´1γ̄B. Note also that
(39) implies that ÃpB,1qθub1 “ ApB,¨qβA ´ dB ´ ÃpB,´1qτ̃

ub. Substituting into the expression
for µB,npβq and using the fact that θubn “

?
nθub1 by Lemma C.1, we obtain µB,npβq “

ApB,¨qpβ ´
?
nβAq ´ ÃpB,1qx `

?
nÃpB,´1qτ̃

ub. Since γ˚1B ÃpB,´1q “ 0 by construction, this
implies that γ˚1BµB,npβq “ γ˚1B pApB,¨qpβ ´

?
nβAq ´ ÃpB,1qxq. Hence,

BBn “ tβ : ηpβ,ApB,¨q,
?
nd, θubn ` x,Σ

˚
q ď 0u

“ tβ : γ˚1B pApB,¨qpβ ´
?
nβAq ´ ÃpB,1qxq ď 0u

“ tβ : γ˚1B pApB,¨qppβ ´ p
?
n´ 1qβAq ´ βAq ´ ÃpB,1qxq ď 0u

“ tβ : pβ ´ p
?
n´ 1qβAq P BB1 u “ p

?
n´ 1qβA ` BB1 .

Now, define β˚n “ arg minβPBBn ||β ´
?
nβA||Σ˚ . The results above imply that

β˚n “ arg min
βPBBn

||β ´
?
nβA||Σ˚

“ arg min
βPp
?
n´1qβA`BB1

||β ´
?
nβA||Σ˚

“ p
?
n´ 1qβA ` arg min

βPBB1

|| β ` p
?
n´ 1qβA ´

?
nβA

looooooooooooooomooooooooooooooon

“pβ´βAq

||Σ˚

“ p
?
n´ 1qβA ` β

˚
1 .

Observe that BBn Ě Bn,0 since BBn is the set of values β that are consistent with a subset of the
moments used in Bn,0 (formally, ηpβ,ApB,¨q,

?
ndBθ

ub
n `x,Σ

˚q ď ηpβ,A,
?
ndθubn `x,Σ

˚q since
the RHS minimizes the same objective function subject to additional constraints). Thus,
β˚n “ β̃n iff β˚n P Bn,0. From the definition of Bn,0, this occurs iff there exists a value τ̃n such
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that

ApB,¨qβ
˚
n ´

?
ndB ´ ÃpB,1qpθ

ub
n ` xq ´ ÃpB,´1qτ̃n ď 0

Ap´B,¨qβ
˚
n ´

?
nd´B ´ Ãp´B,1q

?
npθubn ` xq ´ ÃpB,´1qτ̃n ď 0

Now, since β˚1 P BB1 , there exists a value τ̃˚1 such that

ApB,¨qβ
˚
1 ´ dB ´ ÃpB,1qpθ

ub
1 ` xq ´ ÃpB,´1qτ̃

˚
1 ď 0.

It follows that

ApB,¨qβ
˚
n ´

?
ndB ´ ÃpB,1qpθ

ub
n ` xq ´ ÃpB,´1qpτ̃

˚
1 ` p

?
n´ 1qτ̃ub1 q

“ ApB,¨qβ
˚
1 ´ dB ´ ÃpB,1qpθ

ub
1 ` xq ´ ÃpB,´1qτ̃

˚
1 ` p

?
n´ 1q

”

ApB,¨qβA ´ dB ´ ÃpB,1qθ
ub
1 ´ ÃpB,´1qτ̃

ub
1

ı

“ ApB,¨qβ
˚
1 ´ dB ´ ÃpB,1qpθ

ub
1 ` xq ´ ÃpB,´1qτ̃

˚
1 ď 0,

where the first equality uses the fact that θubn “
?
nθub1 by Lemma C.1 and β˚n “ β˚1 ` p

?
n´

1qβA as shown above, and the second equality uses (39).
Similarly, we have

Ap´B,¨qβ
˚
n ´

?
nd´B ´ Ãp´B,1q

?
npθubn ` xq ´ ÃpB,´1qpτ̃

˚
1 ` p

?
n´ 1qτ̃ub1 q “

“ Ap´B,¨qβ
˚
1 ´ d´B ´ Ãp´B,1qpθ

ub
1 ` xq ´ Ãp´B,1qτ̃

˚
1`

p
?
n´ 1q

”

Ap´B,¨qβA ´ d´B ´ Ãp´B,1qθ
ub
1 ´ Ãp´B,1qτ̃

ub
1

ı

“

”

Ap´B,¨qβ
˚
1 ´ d´B ´ Ãp´B,1qpθ

ub
1 ` xq ´ Ãp´B,1qτ̃

˚
1

ı

´ p
?
n´ 1qε,

for ε a vector with strictly positive elements, where the first equality again uses that θubn “
?
nθub1 and β˚n “ β˚1 ` p

?
n ´ 1qβA, and the second equality uses (40). Since the term

in brackets in the final expression in the previous display does not depend on n and all
elements of the final term go to ´8, for n sufficiently large the expression in the previous
display will be less than or equal to 0. Thus, for n sufficiently large, β˚n “ β̃n, and hence the
MP test of H0 : β P Bn,0 against HA : β “

?
nβA is equivalent to the most powerful test of

H0 : β P BBn against HA : β “
?
nβA.

We showed earlier in the proof that BBn “ tβ : v1β ď d̄nu, for v “ γ˚1BApB,¨q and d̄n “

γ˚1B ÃpB,1qx ` v1
?
nβA. From Lemma C.11, the MP test of H0 : β P BBn against HA : β “ βA

has power equal to Φppv1
?
nβA ´ d̄nq{pv

1Σ˚vq ´ z1´αq. Plugging in the definitions of v and d̄
and cancelling like terms, we obtain that the power of the test is Φp´γ˚1B ÃpB,1qx{σ

˚
B ´ z1´αq,

for σ˚B “
b

γ˚1BApB,¨qΣ
˚A1

pB,¨qγ
˚
B, which coincides with the expression for the limiting power
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of the conditional test in Lemma C.8, as needed.

Lemma C.13 (Lower bound for η). Let ηpβ,A, d, θ̄,Σq be as defined in (31). Fix Σ˚ positive
definite. For any δA, τA, and d, let βApδA, τAq “ δA`τA and θubpδA, τA, dq “ supSp∆, δA`τAq
for ∆ “ tδ : Aδ ď du. Let η˚px; δA, τA, dq :“ ηpβApδA, τAq, A, d, θ

ubpδA, τA, dq ` x,Σ
˚q. Then

there exists a scalar cpΣ˚, Aq ą 0 such that η˚px; δA, τA, dq ě cpΣ˚, Aq ¨ x for all δA, τA, and
d.

Proof. Observe that ηpβA, A, d, θ̄, xq is equivalent to the linear program

min
η,τ

η s.t. AβA ´ d´ Aτ ď ησ̃, l1τ “ θ̄.

The dual formulation for this problem is

max
γ

˜

γA

γθ

¸1˜

AβA ´ d

θ̄

¸

s.t. γ1AA` γθl
1
“ 0, γ1Aσ̃ “ 1, γA ě 0,

where γA is a vector with length equal to the number of rows of A, and γθ is a scalar. Note
that the feasible set for the dual depends on A and Σ˚ but not on d, δA, or τA. Let VD denote
the set of vertices of the dual, which is finite, and recall that maximizing over the feasible
set is equivalent to maximizing over the set of vertices.

Now, we first claim that ηpβA, A, d, θub,Σ˚q “ 0. Note that since θub is in the iden-
tified set, it must be that ηpβA, A, d, θub,Σ˚q ď 0. Towards contradiction, suppose that

ηpβA, A, d, θ
ub,Σ˚q “ ´ε1 ă 0. Then for all γ “

˜

γA

γθ

¸

P VD,

˜

γA

γθ

¸1˜

AβA ´ d

θub

¸

ď ´ε1.

Since VD is finite, γ̄θ :“ maxγPVD γθ is finite. But then for ε2 ą 0,

˜

γA

γθ

¸1˜

AβA ´ d

θub ` ε2

¸

ď ´ε1 ` γ̄θε2.

By choosing ε2 sufficiently small, we can make the upper bound in the previous display less
than or equal to 0. However, this implies that ηpβA, A, d, θub ` ε2,Σ˚q ď 0. But this in turn
implies θub ` ε2 is in the identified set, which contradicts θub being maximal. Therefore,
ηpβA, A, d, θ

ub,Σ˚q “ 0.
Additionally, we claim that for θ̄ “ θub, there must be an optimal dual vertex with

γθ ą 0. Towards contradiction, suppose not. Then there exists ε3 ą 0 such that for all
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γ “

˜

γA

γθ

¸

P VD,` :“ tγ P VD : γθ ą 0u,

˜

γA

γθ

¸1˜

AβA ´ d

θub

¸

ă ´ε3. Letting ε4 “

ε3{maxγPVD,` γθ, it follows that for all γ P VD,`,

˜

γA

γθ

¸1˜

AβA ´ d

θub ` ε4

¸

ă 0. Additionally,

for γ “

˜

γA

γθ

¸

P VDzVD,`, we have γθ ď 0, and so

˜

γA

γθ

¸1˜

AβA ´ d

θub ` ε4

¸

ď

˜

γA

γθ

¸1˜

AβA ´ d

θub

¸

ď 0.

Thus,

˜

γA

γθ

¸1˜

AβA ´ d

θub ` ε4

¸

ď 0 for all γ P VD, and so ηpβA, A, d, θ
ub ` ε4,Σ

˚q ď 0.

However, this implies that θub ` ε4 is in the identified set, which contradicts θub being
maximal. Thus, there must be at least one γ˚ P VD,` such that

˜

γ˚A
γ˚θ

¸1˜

AβA ´ d

θub

¸

“ 0.

Since γ˚ remains feasible in the dual with θ̄ “ θub`x, it follows that ηpβA, A, d, θub`x,Σ˚q
is lower bounded by

˜

γ˚A
γ˚θ

¸1˜

AβA ´ d

θub ` x

¸

“ γ˚θ ¨ x.

Note that the choice of γ˚ P VD,` depended on d, δA, and τA. However, as noted earlier
in the proof, the set VD,` depends on A and Σ˚ but does not on d, δA, τA. Since VD,` is finite
and γθ ą 0 for all γ P VD,`, there is a value c ą 0 such that γθ ě c for all γ P VD,`. Hence,
η˚px; δA, τA, dq ě c ¨ x for all δA, τA, d, as needed.

Lemma C.14. Let α P p0, 1q and c ą z1´α. Then there exists a unique constant ζpcq ą 0

such that

Φpcq ´ Φpc´ ζpcqq

1´ Φpc´ ζpcqq
“ 1´ α.

Additionally, for any values zlo ă zup, with zlo and zup potentially infinite-valued, and η ą
maxtc, zlo ` ζpcqu,

Fξ | ξPrzlo,8qpηq ą 1´ α,

where Fξ | ξPrzlo,zupqp¨q is the CDF of ξ „ N p0, 1q truncated to rzlo, zupq.

Proof. First, we show that Fξ | ξPrzlo,zupqptq is increasing in t and decreasing in zlo and zup, and
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these comparative statics are strict for t P pzlo, zupq. To see this, note that

Fξ | ξPrzlo,zupqptq “

$

’

’

’

’

&

’

’

’

’

%

0 for t ď zlo
Φptq ´ Φpzloq

Φpzupq ´ Φpzloq
for t P pzlo, zupq

1 for t ě zup

It is immediate that Fξ | ξPrzlo,zupqptq is increasing in t and decreasing in zup, and strictly so
when t P pzlo, zupq. Additionally, we have

B

Bzlo

Φptq ´ Φpzloq

Φpzupq ´ Φpzloq
“
´φpzloq pΦpzupq ´ Φptqq

pΦpzupq ´ Φpzloqq
2 ,

which is clearly negative for t P pzlo, zupq, which gives the desired result for zlo.
Next, consider the function

fpζq “
Φpcq ´ Φpc´ ζq

1´ Φpc´ ζq
.

Observe that fp0q “ 0 and limζÑ8 fpζq “ Φpcq ą 1 ´ α. Additionally, the derivative in the

previous paragraph (with zup “ 8) implies that
d

dζ
fpζq ą 0 for ζ ą 0. It follows that there

is a unique value ζpcq ą 0 such that

fpc, ζpcqq “
Φpcq ´ Φpc´ ζpcqq

1´ Φpc´ ζpcqq
“ 1´ α,

which gives the first result.
Next, we claim that for zlo P p´8,8q and ζ ą 0, Fξ | ξPrzlo,8qpzlo ` ζq is increasing in zlo.

To see why this is the case, note that

Fξ | ξPrzlo,8qpzlo ` ζq “
Φpzlo ` ζq ´ Φpzloq

1´ Φpzloq
.

Differentiating with respect to zlo, we obtain

φpzlo ` ζqp1´ Φpzloqq ´ φpzloqp1´ Φpzlo ` ζqq

r1´ Φpzloqs
2 ,

which is greater than zero iff

φpzlo ` ζq

1´ Φpzlo ` ζq
ą

φpzloq

1´ Φpzloq
,

which holds since the normal hazard function is strictly increasing.
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Now, suppose that η ą maxtc, zlo ` ζpcqu. Then

Fξ | ξPrzlo,zupqpηq ě Fξ | ξPrzlo,8qpηq

ą Fξ | ξPrzlo,8qpmaxtc, zlo ` ζpcquq

“ maxtFξ | ξPrzlo,8qpcq, Fξ | ξPrzlo,8qpzlo ` ζpcqqu, (41)

where the first inequality uses the fact that Fξ | ξPrzlo,zupqptq is decreasing in zup and the second
inequality uses the fact that Fξ | ξPrzlo,zupqptq is strictly increasing in t when t P pzlo,8q, and
that maxtc, zlo ` ζpcqu ą zlo since ζpcq ą 0. The final equality again uses the fact that
Fξ | ξPrzlo,zupqptq is increasing in t.

However, if zlo ď c´ ζpcq, then

Fξ | ξPrzlo,8qpcq ě Fξ | ξPrc´ζpcq,8qpcq “ 1´ α,

since we’ve shown that the expression on the left hand side is decreasing in zlo. On the other
hand, if zlo ě c´ ζpcq, then

Fξ | ξPrzlo,8qpzlo ` ζpcqq ě Fξ | ξPrc´ζpcq,8qpcq “ 1´ α,

since we’ve shown that Fξ | ξPrzlo,8qpzlo ` ζq is increasing in zlo. We have thus shown that the
max on the right-hand side of (41) is at least 1´ α, which gives the desired result.

Lemma C.15. For any t P R,
şt

´8
Φpxqdx is finite. In particular,

şt

´8
Φpxqdx “ tΦptq`φptq.

Proof. We have

ż t

´8

Φpxqdx “

ż 8

´8

1rx ď ts

ż 8

´8

1rs ď xsφpsq ds dx

“

ż 8

´8

ż 8

´8

1rs ď x ď tsφpsq ds dx

“

ż 8

´8

pt´ sq1rs ď tsφpsq ds

“ t

ż 8

´8

1rs ď tsφpsq ds´

ż 8

´8

s1rs ď tsφpsq ds

“ tΦptq ´ ΦptqE rξ | ξ ď t, ξ „ N p0, 1qs “ tΦptq ´ Φptq
´φptq

Φptq
,

where the last line uses the formula for the mean of a truncated normal distribution. Note
that we exchange the order of integration via Fubini’s theorem, which is valid since the
integrand is weakly positive everywhere and thus equal to its absolute value, and we’ve
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shown that the integral after switching the order is finite.

Lemma C.16 (Lower bound on conditional test power). Suppose Ỹ pxq „ N
´

µ̃pxq, Σ̃
¯

for

some µ̃pxq such that maxγPV pΣ̃q γ
1µ̃pxq ě x ą 0, where V pΣ̃q is the set of vertices of the dual

feasible set, F “ tγ : γ ě 0, γ1Ãp¨,´1q “ 0, γ1σ̃ “ 1u, and σ̃ contains the square root of the
diagonal elements of Σ̃. Then there exists a function

¯
ρpx, Σ̃q, not depending on µ̃pxq, such

that E
”

ψCα pỸ pxq, Σ̃q
ı

ě
¯
ρpx, Σ̃q and limnÑ8

¯
ρpx, Σ̃q “ 1.

Proof. Recall that ψCα is based on the solution to the dual problem, η̂ “ maxγPV pΣ̃q γ
1Ỹ .

Specifically, ψCα pỸ, Σ̃q “ 1 iff

Fξ | ξPrvloγ˚ ,v
up
γ˚ s
pη̂; γ1˚Σ̃γ˚qq ą 1´ α,

where γ˚ is an optimal solution to the dual pγ˚ P V̂ q, and vlo, vup are functions of γ˚, Σ̃, and
a sufficient statistic Sγ˚pỸ q that by construction is independent of γ1˚Ỹ . (In this proof only,
we make the dependence of vlo and vup on γ˚ explicit in the notation.) If γ1˚Σγ˚ ‰ 0, then
using the standard formula for the CDF of a truncated normal distribution, we have that
the conditional test rejects iff

Φpη̂{σγ˚q ´ Φpzloγ˚q

Φpzupγ˚q ´ Φpzloγ˚q
ą 1´ α, (42)

where σγ˚ “
b

γ1˚Σ̃γ˚ and zloγ˚ “ v̂loγ˚{σγ˚ , z
up
γ˚ “ v̂upγ˚{σγ˚ . By Lemma C.14, for any c ą z1´α,

(42) holds whenever η̂{σγ˚ ą maxtc, zloγ˚ ` ζpcqu, where ζpcq is the unique value that solves

Φpcq ´ Φpc´ ζpcqq

1´ Φpc´ ζpcqq
“ 1´ α.

Thus, when σγ˚ ‰ 0, ψCα “ 1 whenever η{σγ˚ ą maxtc, zloγ˚` ζpcqu, or equivalently, whenever
η̂ ą σγ˚c and η̂{σγ˚ ´ zloγ˚ ą ζpcq. Additionally, if σγ˚ “ 0, then ψCα “ 1 whenever η̂ ą 0.

Let σ̄ “ maxγPV pΣ̃q σγ, which is finite since V pΣ̃q is finite. Then the preceding discussion
implies that for any c ą maxtz1´α, 0u, ψCα “ 1 whenever

1) η̂ ą σ̄c, AND

2) Dγ˚ P V̂ such that either i) σγ˚ “ 0, OR ii) σγ˚ ą 0 and γ1˚Ỹ {σγ˚ ´ zloγ˚ ą ζpcq,

where for the second part of condition 2) we use the fact that η̂ “ γ1˚Ỹ when γ˚ P V̂ . Hence,
ψCα “ 0 only if either

A) η̂ ď σ̄c, OR
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B) Dγ˚ P V̂ such that σγ˚ ą 0 and γ1˚Ỹ {σγ˚ ´ zloγ˚ ď ζpcq.

Now, by assumption there exists some γ̄ P V pΣ̃q such that γ̄1µ̃pxq ě x. Since γ̄ is feasible
in the dual problem for η̂, we see that η̂ is lower bounded by γ̄1Ỹ , which is distributed
N

`

γ̄1µ̃pxq, σ2
γ̄

˘

. Thus, the probability that condition A) holds is bounded above by the
probability that γ̄1Ỹ ď σ̄c. If σγ̄ “ 0, then the probability condition A) holds is 0 so long

as c ă x
σ̄
. If σγ̄ ą 0, then P

´

γ̄1Ỹ ď σ̄c
¯

“ Φ

ˆ

σ̄c´ γ̄1µ̃pxq

σγ̄

˙

. If σγ̄ ą 0, then the set

V `pΣ̃q :“ tγ P V pΣ̃q ; σγ ą 0u is non-empty. In this case, let
¯
σ “ minγPV ` σγ and note that

¯
σ ą 0 since V ` is finite. Then

Φ

ˆ

σ̄c´ γ̄1µ̃pxq

σγ̄

˙

ď Φ

ˆ

σ̄c´ x

σγ̄

˙

ď Φ

ˆ

σ̄

¯
σ
c´

x

σ̄

˙

,

where we use the fact that Φp¨q is increasing, c ě 0 and γ̄1µ̃pxq ě x ą 0. Thus, if c ă x
σ̄
, we

have that condition A) holds with probability bounded above by Φ
´

σ̄

¯
σ
c´ x

σ̄

¯

.
Now, the probability that condition B) holds is equal to

P
´

Dγ˚ P V̂ s.t. σγ˚ ą 0 and γ1˚Ỹ {σγ˚ ´ z
lo
γ˚ ď ζpcq

¯

“

P
´

Dγ˚ P V̂ s.t. σγ˚ ą 0 and
ˇ

ˇ

ˇ
γ1˚Ỹ {σγ˚ ´ z

lo
γ˚

ˇ

ˇ

ˇ
ď ζpcq

¯

ď

P
´

Dγ` P V
` s.t.

ˇ

ˇ

ˇ
γ1`Ỹ {σγ` ´ z

lo
γ`

ˇ

ˇ

ˇ
ď ζpcq

¯

ď

ÿ

γ`PV `

P
´

|γ1`Ỹ {σγ` ´ z
lo
γ`
| ď ζpcq

¯

.

The equality above uses the fact that γ˚ P V̂ implies that γ1˚Ỹ {σγ˚´ zloγ˚ ě 0 since η̂ ě vlo by
construction; and the remaining inequalities follow from standard properties of probability.
Next, observe that γ1`Ỹ {σγ` is normally distributed with variance 1 for every γ` P V `pΣ̃q.
Additionally, the random variable zloγ` is by construction independent of γ1`Ỹ {σγ` . However,
for any variable ξ that is normally distributed with variance 1 and any variable Z independent
of ξ,

Ppξ,Zq p|ξ ´ Z| ď ζq “ EZ
“

Pξ|Z pξ P rz ´ ζ, z ` ζs |Z “ zq
‰

ď max
vPR

Pξ pξ P rv ´ ζ, v ` ζsq “ Φpζq ´ Φp´ζq,

where the first equality follows from iterated expectations, the inequality uses the fact that
the distribution of ξ is independent of Z, and the final equality uses the fact that the
normal distribution is single-peaked at its mean, so the maximal probability that a normal
distribution with variance 1 falls in an interval of length 2ζ is Φpζq ´ Φp´ζq. Additionally,
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observe that Φpζq ´ Φp´ζq “
şζ

´ζ
φptqdt ď 2φp0qζ. It follows that for any constant c ą

maxtz1´α, 0u, the probability condition B) holds is bounded above by κζpcq, where we define
the constant κ “ 2|V `|φp0q.

Since ψCα “ 0 only if either condition A) or condition B) holds, the probability that ψCα “ 0

is bounded above by Φ
´

σ̄

¯
σ
c´ x

σ̄

¯

` κζpcq, for any c P rmaxtz1´α, 0u,
x
σ̄
q. Let cpxq “ c0 ¨ x for

c0 “
1

2
¯
σ

σ̄2
. Note that cpxq ą maxtz1´α, 0u for x ą maxtz1´α{c0, 0u “: xmin. Note also that

c0 “
1
2

¯
σ

σ̄
1
σ̄
ă 1

σ̄
, so cpxq ă 1

σ̄
x. For x ą xmin, we then have that the probability ψCα “ 0 is

bounded above by Φ

ˆ

´
1

2σ̄
x

˙

` κζpc0xq.

Define
¯
ρpx, Σ̃q “ 1 ´ Φ

ˆ

´
1

2σ̄
x

˙

´ κζpc0xq for x ą xmin and
¯
ρpx, Σ̃q “ 0 otherwise. By

construction, E
”

ψCα pỸ, Σ̃q
ı

ě
¯
ρpx, Σ̃q. Note that as x Ñ 8, Φ

ˆ

´
1

2σ̄
x

˙

Ñ 0. To complete

the proof that
¯
ρÑ 1, we show that κζpcq Ñ 0 as cÑ 8. To show this, observe that for any

ε ą 0, by L’Hospitale’s rule,

lim
cÑ8

Φpcq ´ Φpc´ εq

1´ Φpc´ εq
“ lim

cÑ8

φpcq ´ φpc´ εq

´φpc´ εq

“ 1´ lim
cÑ8

φpcq

φpc´ εq

“ 1´ lim
cÑ8

exp

ˆ

´
1

2
p2cε´ ε2q

˙

“ 1.

Additionally, as shown in the proof to Lemma C.14,
Φpcq ´ Φpc´ ζq

1´ Φpc´ ζq
is increasing in ζ. It is

then immediate that lim supcÑ8 ζpcq ă ε for all ε ą 0, and hence limcÑ8 ζpcq “ 0.

Lemma C.17 (Lower bound on hybrid power). Suppose Ỹ pxq „ N
´

µ̃, Σ̃
¯

for some µ̃pxq

such that maxγPV pΣ̃q γ
1µ̃pxq ě x ą 0, where V pΣ̃q is the set of vertices of the dual feasible

set, F “ tγ : γ ě 0, γ1Ãp¨,´1q “ 0, γ1σ̃ “ 1u, and σ̃ contains the square root of the diagonal
elements of Σ̃. Then there exists a function

¯
ρpx, Σ̃q, not depending on µ̃pxq, such that

E
”

ψC-FLCI
κ,α pỸ pxq, Σ̃q

ı

ě
¯
ρpx, Σ̃q and limnÑ8

¯
ρpx, Σ̃q “ 1.

Proof. The proof is nearly identical to that of Lemma C.16. In particular, by analogous
argument we can show that the test ψC-FLCI

κ,α “ 0 only if A) η̂ ď σ̄cα̃, or B) Dγ˚ P V̂ such that
σγ˚ ą 0 and 0 ď γ1˚Ỹ {σγ˚ ´ zloC-FLCI,γ˚

ď ζpcα̃q, where zloC-FLCI,γ˚
“ vloC-FLCI,γ˚

{σγ˚ , and cα̃

solves
Φpcα̃q ´ Φpcα̃ ´ ζpcα̃qq

1´ Φpcα̃ ´ ζpcα̃qq
“ 1´ α̃. Noting that zloC-FLCI,γ˚

is independent of γ1˚Ỹ , we can

then obtain upper bounds on the probability that conditions A) or B) hold by an analogous
argument to that in the proof to Lemma C.16.
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Lemma C.18 (Lower bounds on power). Let ∆ “ tδ : Aδ ď du, and let θubp∆, βq :“

supSp∆, βq. Then there exists a function ρLBp¨, ¨q such that for any δ P ∆, τ , Σ˚, and
x ą 0,

Epδ,τ,Σ˚q
”

ψCα pβ̂n;A, d, θubp∆, δ ` τq ` x,Σ˚q
ı

ě ρLBpx,Σ
˚
q,

and for any Σ˚ fixed, ρLBpx,Σ˚q Ñ 1 as xÑ 8. Analogously, there exists a function ρ̃LBp¨, ¨q
such that for any δ P ∆, τ , Σ˚, and x ą 0,

Epδ,τ,Σ˚q
”

ψC-FLCI
κ,α pβ̂n;A, d, θubp∆, δ ` τq ` x,Σ˚q

ı

ě ρ̃LBpx,Σ
˚
q,

and for any Σ˚ fixed, ρ̃LBpx,Σ˚q Ñ 1 as xÑ 8.

Proof. Lemma C.13 implies that there exists a scalar cpΣ˚, Aq ą 0 such that

cpΣ˚, Aq ¨ x ď η˚px; δ, τ,Σ˚q :“ min
η,τ̃

η s.t. Aβ ´ d´ Ãp¨,1qpθub ` xq
loooooooooooooomoooooooooooooon

:“µ̃

´Ãp¨,´1qτ̃ ď ησ̃,

where β “ δ ` τ . Reformulating the minimization above in terms of its dual, we have that
cpΣ˚, Aq ¨ x ď maxγPV pΣ̃˚q γ

1µ̃, where V pΣ̃˚q is the set of vertices of F “ tγ1Ãp¨,´1q “ 0, γ1σ̃ “

0, γ ě 0u. Next, recall that by definition, ψCα pβ̂;A, d, θ̄,Σ˚q “ ψCα pỸ pβ̂, A, d, θ̄q, AΣ˚A1q,
where Ỹ pβ̂, A, d, θ̄q “ Aβ̂ ´ d ´ Ãp¨,´1qθ̄. Observe that Epδ,τ,Σ˚q

”

Ỹ pβ̂, A, d, θ̄q
ı

“ µ̃. Lemma
C.16 then implies that there exists a function

¯
ρp¨, ¨q such that

Epδ,τ,Σ˚q
”

ψCα pβ̂n;A, d, θubp∆, δ ` τq ` x,Σ˚q
ı

ě
¯
ρpcpΣ˚, Aq ¨ x,AΣ˚A1q,

and
¯
ρpx̃, AΣ˚A1q Ñ 1 as x̃Ñ 8. The first desired result then follows by defining ρLBpx,Σ˚q :“

¯
ρpcpΣ˚, Aq ¨ x,AΣ˚A1q. The second desired result follows from an analogous argument, ap-
pealing to Lemma C.17 instead of Lemma C.16.

Lemma C.19 (Bounds for worst-case bias). For any pa, vq, b̄pa, vq ě 1
2

supδpreP∆pre
LIDp∆, δpreq.

Proof. Since β “ δ ` τ , we can write the bias of the affine estimator a ` v1β̂ as b “ a `

v1δ ` pvpost ´ lq
1τpost. Since τpost is unrestricted in the maximization in (11), we see that the

worst-case bias will be infinite if vpost ‰ l and the lemma holds trivially. We can thus restrict
attention to affine estimators with vpost “ l, in which case the worst-case bias reduces to

b̄pa, vq “ sup
δP∆

|a` v1δ| “ sup
δP∆

|a` v1preδpre ` l
1δpost|. (43)

Now, pick any δ˚pre P ∆pre. First, suppose that the minimum
`

minδ l
1δpost, s.t. δ P ∆, δpre “ δ˚pre

˘

A-34



and the equivalent maximum
`

maxδ l
1δpost, s.t. δ P ∆, δpre “ δ˚pre

˘

are finite. Let δmin and
δmax be the associated solutions. By construction, δmaxpre “ δminpre “ δ˚pre. For any vpre, we
apply the triangle inequality to show that

ˇ

ˇa` v1preδ
max
pre ` l

1δmaxpost

ˇ

ˇ`
ˇ

ˇa` v1preδ
min
pre ` l

1δminpost

ˇ

ˇ ě
ˇ

ˇ

`

a` v1preδ
max
pre ` l

1δmaxpost

˘

´
`

a` v1preδ
min
pre ` l

1δminpost

˘
ˇ

ˇ

“ |l1δmaxpost ´ l
1δminpost | “ LIDp∆, δ˚preq.

Note that for any x1, x2 ě 0, maxtx1, x2u ě
1
2
px1 ` x2q. It then follows from the previous

display that

maxt
ˇ

ˇa` v1preδ
max
pre ` l

1δmaxpost

ˇ

ˇ ,
ˇ

ˇa` v1preδ
min
pre ` l

1δminpost

ˇ

ˇu ě
1

2
LIDp∆, δ˚preq.

Since δmaxpre and δminpre are feasible in the maximization (43), we see that b̄ ě 1
2
LIDp∆, δ˚preq,

as needed. To complete the proof, now suppose without loss of generality that

´

max
δ
l1δpost, s.t. δ P ∆, δpre “ δ˚pre

¯

“ 8.

Then, we can replay the argument above replacing δmax with a sequence of values tδju such
that l1δj diverges, which gives that b̄ is infinite and the result follows.

Lemma C.20. Suppose ∆ is convex. Suppose there exists δ P ∆ such that LIDp∆, δpreq “
supδ̃preP∆pre

LIDp∆, δ̃preq ă 8. Then there exists pa, vq such that b̄pa, vq “ 1
2

supδ̃preP∆pre
LIDp∆, δ̃preq.

Additionally, for any τ and Σn, Epδ,τ,Σnq
”

a` v1β̂n

ı

“ 1
2
pθub ` θlbq, where θub and θlb are the

upper and lower bounds of the identified set Sp∆, δ ` τq.

Proof. Let bmaxpδ˚preq :“
`

maxδ l
1δpost, s.t. δ P ∆, δpre “ δ˚pre

˘

, where we define bmax “ ´8

if δ˚pre R ∆pre. Likewise, define bminpδ˚preq :“
`

minδ l
1δpost, s.t. δ P ∆, δpre “ δ˚pre

˘

, where we
define bmin “ 8 if δ˚pre R ∆pre. Note that ∆ convex implies that bmax is concave and
bmin is convex. Thus, ´LIDpδ˚preq “ bminpδ˚preq ´ bmaxpδ˚preq is convex (where we define
LIDpδ˚preq “ ´8 if δ˚pre R ∆pre). The domain of ´LIDpδ˚preq (i.e. the set of values for which
it is finite) is ∆pre, since it is infinite for δ˚pre R ∆pre by construction, and by assumption,
LIDpδ˚preq is finite for all δ˚pre P ∆pre. Since ∆ is assumed to be convex, it is easy to
verify that ∆pre is a non-empty convex set, and thus has non-empty relative interior, so the
relative interior of the domain of ´LID is non-empty.32 It follows from Theorem 8.2 in
Mau Nam (2019) that Bp´LIDq “ Bp´bmaxq ` Bpbminq where for a convex function f , Bf is
the subdifferential Bfpx̄q :“ tv : fpx̄q ` v1px´ x̄q ď fpxq, @xu and Bp´bmaxq ` Bpbminq is the

32The relative interior of a set is the interior of the set relative to its affine hull. See, e.g., Mau Nam
(2019), Chapter 5.
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Minkowski sum of the two subdifferentials.
Additionally, if LIDpδpreq “ supδ̃preP∆pre

LIDpδ̃preq, then´LIDpδpreq “ inf δ̃preP∆pre
´LIDpδ̃preq.

Thus, standard results in convex analysis (see, e.g., Theorem 16.2 in Mau Nam (2019)) give
that 0 P Bp´LIDqpδpreq`Np∆; δpreq, where Np∆; δpreq “ tvpre : v1prepδ̃pre´ δpreq ď 0, @δ̃pre P

∆preu is the normal cone to ∆pre at δpre. Hence, there exist vectors v̄min, v̄max such that for
all δ̃pre P ∆pre,

bminpδpreq ` v̄
1
minpδ̃pre ´ δpreq ď bminpδ̃preq (44)

´ bmaxpδpreq ` v̄
1
maxpδ̃pre ´ δpreq ď ´b

max
pδ̃preq (45)

´ pv̄min ` v̄maxq
1
pδ̃pre ´ δpreq ď 0. (46)

The inequalities (45) and (46) together imply that for all δ̃pre P ∆pre,

bmaxpδpreq ` v̄
1
minpδ̃pre ´ δpreq ě bmaxpδ̃preq. (47)

Now, let v be the vector such that vpost “ l and vpre “ ´v̄min. Observe that

max
δ̃P∆

a` v1preδ̃pre ` l
1δ̃post “ max

δ̃preP∆pre

ˆ

a` v1preδ̃pre ` max
δ̄P∆,δ̄pre“δ̃pre

l1δ̄post

˙

“ max
δ̃preP∆pre

a` v1preδ̃pre ` b
max
pδ̃preq

ď a` v1preδpre ` b
max
pδpreq, (48)

where the first equality nests the maximization, the second equality uses the definition of
bmax, and the inequality follows from (47). An analogous argument using (44) yields that

min
δ̃P∆

a` v1preδ̃pre ` l
1δ̃post “ min

δ̃preP∆pre

a` v1preδ̃pre ` b
min
pδ̃preq

ě a` v1preδpre ` b
min
pδpreq. (49)

Now, it is apparent from equation (43) that

b̄pa, vq “ max

"
ˇ

ˇ

ˇ

ˇ

max
δ̃P∆

a` v1preδ̃pre ` l
1δ̃post

ˇ

ˇ

ˇ

ˇ

,

ˇ

ˇ

ˇ

ˇ

min
δ̃P∆

a` v1preδ̃pre ` l
1δ̃post

ˇ

ˇ

ˇ

ˇ

*

, (50)

which is bounded above by max
 ˇ

ˇa` v1preδpre ` b
maxpδpreq

ˇ

ˇ ,
ˇ

ˇa` v1preδpre ` b
minpδpreq

ˇ

ˇ

(

from
the results above. Setting a “ ´v1preδpre ´

1
2
pbmaxpδpreq ` bminpδpreqq, the upper bound in

the previous display reduces to 1
2
pbmaxpδpreq´ b

minpδpreqq. Since LIDp∆, δpreq “ bmaxpδpreq´

bminpδpreq and LIDp∆, δpreq “ supδ̃preP∆pre
LIDp∆, δ̃preq by assumption, it is then immediate
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that b̄ ď 1
2

supδ̃preP∆pre
LIDp∆, δ̃preq. The inequality in the opposite direction follows from

Lemma C.19.
Finally, substituting in the definition of a and v above and simplifying, we see that

Epδ,τ,Σnq
”

a` v1β̂n

ı

“ l1βpost´
1
2
pbmaxpδpreq` b

minpδpreqq, which from (6) and (7) we see is the
midpoint of the identified set.

Lemma C.21. Let χα be the 1´ α quantile of the |N pb, σ2q | distribution for b ě 0. Then
b` σz1´α ď χα ď b` σz1´α{2.

Proof. Since |ξ| ě ξ, we have that q1´αp|ξ| | ξ „ N pb, σ2qq ě q1´αpξ | ξ „ N pb, σ2qq “

b` σz1´α, which yields the first inequality. For the second inequality, observe that

q1´αp|ξ| | ξ „ N
`

b, σ2
˘

q “ q1´αp|ξ ` b| | ξ „ N
`

0, σ2
˘

q

ď b` q1´αp|ξ| | ξ „ N
`

0, σ2
˘

q “ b` σz1´α{2

where the first inequality uses the triangle inequality, and the final equality uses the fact
that a mean-zero normal distribution is symmetric about 0.

Lemma C.22. Suppose the conditions of Proposition A.1 hold. Then there is a unique pair
pā, v̄q such that b̄pā, v̄q “ 1

2
supδ̃preP∆pre

LIDp∆, δ̃preq “: b̄min. Additionally,
?
v̄1AΣ˚A1v̄ “

1{c˚, for the same constant c˚ as in Proposition 4.2.

Proof. Existence of an pā, v̄q satisfying b̄pā, v̄q “ b̄min follows from Lemma C.20, so to es-
tablish the existence of a unique solution it suffices to establish uniqueness. In the proof
to Lemma C.7, we showed that bminpδA,preq is equivalent to the problem (35). Assump-
tion 4 implies that there is a solution δ˚˚post to the optimization (35) such that ApB,postq
has rank |B|, where B indexes the binding moments. The solution δ˚˚post to the prob-
lem (35) is thus non-degenerate. It follows that in a neighborhood of δpre,A, bminpδpreq “
bminpδA,preq ` γ̄1Ap¨,preqpδpre ´ δA,preq, where γ̄ is a solution to the dual problem (see, e.g.,
Section 10.4 of Schrijver (1986)). By the complementary slackness conditions, γ̄´B “ 0.
Moreover, we showed in the proof to Lemma C.7 that γ̄B is the unique vector that satisfies
γ̄1BÃpB,´1q “ 0, γ̄1BÃpB,1q “ 1.

Next, combining the expression for b̄ in (50) along with the equalities in (48) and (49) in
the proof to Lemma C.20, we see that for any pa, vq,

b̄pa, vq “ max

"
ˇ

ˇ

ˇ

ˇ

max
δ̃preP∆pre

a` v1preδ̃pre ` b
max
pδ̃preq

ˇ

ˇ

ˇ

ˇ

,

ˇ

ˇ

ˇ

ˇ

min
δ̃preP∆pre

a` v1preδ̃pre ` b
min
pδ̃preq

ˇ

ˇ

ˇ

ˇ

*

.

(51)
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This implies that if pā, v̄q are such that b̄pā, v̄q “ b̄min, then for all δ̃pre P ∆pre,

b̄min ě max
!
ˇ

ˇ

ˇ
ā` v̄1preδ̃pre ` b

max
pδ̃preq

ˇ

ˇ

ˇ
,
ˇ

ˇ

ˇ
ā` v̄1preδ̃pre ` b

min
pδ̃preq

ˇ

ˇ

ˇ

)

. (52)

Now, note that by the triangle inequality, for any scalars x1, x2, x3 with x2 ě x3, maxt|x1 `

x2|, |x1 ` x3|u ě
1
2
|x2 ´ x3|, with equality if and only if x1 ` x3 “ ´px1 ` x2q. Further, recall

that bmaxpδA,preq ´ bminpδA,preq “ LIDp∆, δA,preq “ 2b̄min. It follows from these two facts
along with the expression in the previous display that

b̄min “ ā` v̄1preδA,pre ` b
max
pδA,preq “ ´

`

ā` v̄1preδA,pre ` b
min
pδA,preq

˘

. (53)

Displays (52) and (53) imply that for all δ̃pre P ∆pre,

v̄1prepδ̃pre ´ δ̃A,preq ` b
min
pδ̃preq ´ b

min
pδA,preq ě 0

which using the local linearization derived above implies that

pv̄1pre ` γ̄
1Ap¨,preqqqpδ̃pre ´ δA,preq ě 0

for all δ̃pre P ∆pre in a sufficiently small neighborhood of δA,pre. However, Assumption 4
implies that δA,pre is in the interior of ∆pre, and so the equality in the previous display can
hold for all such δ̃pre only if v̄1pre “ ´γ̄1Ap¨,preq. We argued in the proof to Lemma C.19 that
v̄post must equal l, so we have shown that there is a unique value of v̄. Further, (53) uniquely
pins downs ā in terms of v̄, and so the pair pā, v̄q is unique, as claimed.

Finally, recall from the proof to Lemma C.7 that´γ̄1Ap¨,postq “ l1. Hence v̄1 “ p´γ̄1Ap¨,preq,´γ̄1Ap¨,postqq “
´γ̄1A and thus v̄1Σ˚v̄ “ γ̄1AΣ˚A1γ̄. Since γ̄´B “ 0 and γ̄1BÃpB,1q “ 1, we see that 1{

?
v̄1Σ˚v̄

corresponds with the formula for c˚ given in Lemma C.8.

Lemma C.23. Suppose the conditions of Proposition A.1 hold. Then
σvn,n
σv̄,n

Ñ 1, where the

optimal FLCI is based on the affine estimator an ` v1nβ̂n and v̄ is the unique value such that
b̄pā, v̄q “ b̄min.

Proof. It suffices to show that
?
nσvn,n?
nσv̄,n

Ñ 1. Note that
?
nσv̄,n “ σv̄,1 “

?
v̄1Σ˚v̄. By as-

sumption, Σ˚ is positive definite, and we showed in the proof to Lemma C.19 that v̄post “ l, so
v̄ ‰ 0. Hence σv̄,1 ą 0. Next, observe that

?
nσvn,n “

a

v1nΣ˚vn. It thus suffices to show that
vn Ñ v̄, since then both the numerator and denominator converge to the same non-zero limit.
To do this, we will show that every subsequence of vn has a convergent subsequence. Consider
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a subsequence vnm . We argued in the proof to Proposition 3.2 that σvn,n ď σv̄,n, which implies
that

a

v1nΣ˚vn ď
?
v̄1Σ˚v̄. Thus, vn is bounded in the Mahalanobis norm using Σ˚, which im-

plies that vn is bounded in the standard euclidean norm since Σ˚ positive definite. It follows
that vnm has a convergent subsequence, vnm,1 Ñ v˚. We argued in the proof to Proposition
3.2 that b̄pan, vnq Ñ b̄min. This implies, however, that anm,1 is bounded. To see why this is
the case, note that if there is a divergent subsequence anm,2, then for any fixed δ̃pre P ∆pre,
|anm,2 ` v

1
nm,2,preδ̃pre ` b

maxpδ̃preq| diverges since vnm,2,pre Ñ v˚pre. Equation (51) then implies
that b̄panm,2, vnm,2q diverges, which is a contradiction. Thus anm,1 is bounded, and so we can
extract a further subsequence such that panm,2, vnm,2q Ñ pa˚, v˚q. For ease of notation, sup-
pose without loss of generality that these convergences hold for the original subsequence nm.
To complete the proof, we will show that b̄pa˚, v˚q “ b̄min, which then implies that v˚ “ v̄ by
Lemma C.22. To show this, note that (43) together with the identity |x| “ maxtx,´xu im-
ply that b̄pa, vq “ max tpmaxδ a` v

1δ s.t. Aδ ď dq , pmaxδ ´a´ v
1δ s.t. Aδ ď dqu. Consider

the first inner maximization, and let δnm denote the optimal value using v “ vnm , and δ˚

the optimal value using v “ v˚. Since δ˚ is feasible in the optimization using vnm , we have
anm ` v

1
nmδ

˚ ď anm ` v
1
nmδnm . Taking limits on both sides of this inequality implies that

a˚ ` pv˚q1δ˚ “
´

max
δ
a˚ ` pv˚q1δ s.t. Aδ ď d

¯

ď lim inf
mÑ8

´

max
δ
anm ` v

1
nmδ s.t. Aδ ď d

¯

.

Applying a similar argument to the second inner maximization, it follows that

b̄pa˚, v˚q ď lim
mÑ8

b̄panm , vnmq “ b̄min.

But b̄pa˚, v˚q ě b̄min by Lemma C.19, which gives the desired equality.

Lemma C.24. limxÑ8pcvαpxq ´ pz1´α ` xqq “ 0.

Proof. cvαpxq solves Φ pcvαpxq ´ xq´Φ p´cvαpxq ´ xq “ 1´α. By Lemma C.21, cvαpxq ě x`

z1´α, which diverges as xÑ 8. Thus, Φ p´cvαpxq ´ xq converges to 0 and Φ pcvαpxq ´ xq Ñ

1´ α, together implying cvαpxq ´ xÑ z1´α.

Lemma C.25. Suppose that Assumption 4 holds at δA,pre. Then LIDp∆, δA,preq ą 0.

Proof. From (6) and (7), we see that that LIDp∆, δA,preq “ 0 if and only if bmaxpδA,preq “
bminpδA,preq, where bminpδpre,Aq :“ pminδ l

1δpost, s.t. δ P ∆, δpre “ δpre,Aq, and bmax is defined
analogously. In the proof to Lemma C.7, we showed that bmin is equivalent to the problem
(35). Assumption 4 implies that there is a solution δ˚˚post such that

ApB,postqδ
˚˚
post “ dB ´ ApB,preqδA,pre and Ap´B,postqδ˚˚post ă d´B ´ Ap´B,preqδA,pre,
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where AB,post has rank |B|. Observe that if bminpδA,preq “ bmaxpδA,preq, then it must be that
l1δ˚˚pre “ l1δ̃pre for any δ̃pre that is feasible in the problem (35). It thus suffices to construct a
feasible value δ̃pre such that l1δ̃pre ‰ l1δ˚˚pre. Since ApB,postq has rank |B|, its image is R|B|, so
there exists δ̄post such that ApB,postqδ̄post “ ´ι, for ι the vector of ones. Thus, for any ε1 ą 0,
we have that ApB,postqpδ˚˚post ` ε1δ̄postq ă dB ´ ApB,preqδA,pre. However, since the moments
´B are slack at δA,pre, for ε1 sufficiently small, we also have Ap´B,postqpδ˚˚post ` ε1δ̄postq ă

d´B ´ Ap´B,preqδA,pre. If l1δ̄post ‰ 0, then we are done. If l1δ̄post “ 0, then since all of the
moments are slack at δ˚˚post` ε1δ̄post, for ε2 ą 0 sufficiently small, δ̃post “ δ˚˚post` ε1δ̄post` ε2l is
also feasible, and by construction l1pδ̃post ´ δ˚˚postq “ ε2l

1l ą 0.

Lemma C.26. Suppose ∆ is convex and centrosymmetric, and δA is such that δ P ∆ implies
δ ´ δA P ∆. Then δA satisfies Assumption 3.

Proof. Recall from the proof to Lemma C.20 that for any δ˚pre P ∆pre, LIDp∆, δ˚preq “
bmaxpδ˚preq ´ b

minpδ˚preq, where the functions bmin and ´bmax are convex. Observe that

bminpδ˚preq “
´

min
δ
l1δpost, s.t. δ P ∆, δpre “ δ˚pre

¯

“ ´

´

max
δ
l1p´δpostq, s.t. δ P ∆, δpre “ δ˚pre

¯

“ ´

´

max
δ
l1δpost, s.t. δ P ∆, δpre “ ´δ

˚
pre

¯

“ ´bmaxp´δ˚preq,

where the third equality uses the fact that ∆ is centrosymmetric. Hence, ´LIDp∆, δ˚preq “
´bmaxpδ˚preq ´ bmaxp´δ˚preq. It follows from the subdifferential sum and chain rules for con-
vex functions (e.g., Theorems 8.2 and 9.3 in Mau Nam (2019)) that B ´ LIDp∆, δ˚preq “

Bp´bmaxqpδ˚preq ` p´Bp´b
maxqp´δ˚preqq, for ` the Minkowski sum. It is then immediate

that 0 P Bp´LIDp∆, 0qq, and hence 0 P arg minδ̃preP∆pre
´LIDp∆, δ̃preq. This implies that

LIDp∆, 0q “ supδ̃preP∆pre
LIDp∆, δ̃preq.

To complete the proof, we show that LIDp∆, δA,preq ě LIDp∆, 0q. We first claim
that for any δ P ∆, we also have δ ` δA P ∆. Indeed, by centrosymmetry, ´δ P ∆.
By assumption, this implies that ´δ ´ δA P ∆. Applying centrosymmetry again, we see
that δ ` δA P ∆, as desired. Next, suppose that δmax is optimal in the maximization
bmaxp0q “ pmaxδ l

1δpost, s.t. δ P ∆, δpre “ 0q. Then δmax ` δA is feasible in the optimiza-
tion pmaxδ l

1δpost, s.t. δ P ∆, δpre “ δA,preq, and thus bmaxpδA,preq ě bmaxp0q ` l1δA,post. By
analogous argument, we can obtain that bminpδA,preq ď bminp0q ` l1δA,post. It follows that
LIDp∆, δA,preq “ bmaxpδA,preq´ b

minpδA,preq ě bmaxp0q´ bminp0q “ LIDp∆, 0q, as needed.

Lemma C.27. Fix Σ˚ positive definite, δA P ∆, and τA. Suppose Assumption 4 holds at δA,
and let B “ Bpδ˚˚q. Let V̂n denote the set of optimal vertices used in ψCα pβ̂n;A,

?
nd, θubn `

x,Σ˚q, where θubn “ supSp∆n,
?
npδA ` τAqq, ∆n “

?
n∆. Then
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lim
nÑ8

Pp?nδA,?nτA,Σ˚q
´

V̂n “ tcγ̄u
¯

“ 1,

where c ą 0 and γ̄ is the vector such that γ̄´B “ 0 and γ̄B is the unique vector such that
γ̄1Ãp¨,´1q “ 0, γ̄ ě 0, ||γ̄|| “ 1.

Proof. Observe that V̂n “ arg minγPV pΣ˚q γ
1Ỹn, where Ỹn “ Aβ̂n´

?
nd´ Ãp¨,1qpθ

ub
n `xq. Since

all vertices γ P V pΣ˚q satisfy γ1Ãp¨,´1q “ 0 by definition, we have that V̂n “ arg minγPV pΣ˚q γ
1Y̆n,

for Y̆n “ Ỹn ´ Ãp¨,´1qp
?
nτ̃ub1 q and τ̃ub1 the vector constructed in the proof to Lemma C.8.

However, we showed in the proof to Lemma C.8 that Ep?nδA,?nτA,Σ˚q
”

Y̆n,B

ı

“ ´ÃpB,1qx and

Ep?nδA,?nτA,Σ˚q
”

Y̆n,´B

ı

Ñ ´8 as n Ñ 8. Lemmas E.1 and F.7 in the supplementary ma-
terial together imply that there is a unique vector γ˚ P V pΣ˚q such that γ˚´B “ 0, which
satisfies γ˚B “ cγ̄ for c ą 0. By definition, γ ě 0 for all γ P V pΣ˚q, and thus γ´B has at least
one strictly positive element for all γ P V pΣ˚qztγ˚u. It follows that

lim
nÑ8

Ep?nδA,?nτA,Σ˚q
”

γ˚1Y̆n

ı

“ ´γ˚1B ÃpB,1qx and lim
nÑ8

Ep?nδA,?nτA,Σ˚q
”

γ1Y̆n

ı

“ ´8, @γ P V pΣ˚qztγ˚u.

Let Pn denote the sequence of data-generating processes characterized by p
?
nδA,

?
nτA,Σ

˚q.
Note that that for all n, pγ˚´γq1Ỹn is normally distributed with variance pγ˚´γq1Σ˚pγ˚´γq
under Pn. This combined with the results in the previous display imply that γ˚1Y̆n´γ1Y̆n

Pn
Ñp

8 for all γ P V pΣ˚qztγ˚u. Since V pΣ˚qztγ˚u is finite, this implies that minγPV pΣ˚qztγ˚upγ
˚1Y̆n´

γ1Y̆nq
Pn
Ñp 8, from which we see that γ˚1Y̆n “ maxγPV pΣ˚q γ

1Y̆n with probability approaching
1 under Pn, which gives the desired result.

D Additional Tables and Figures
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Figure D.1: Sensitivity analysis for θ “ τ15 for Lovenheim and Willen (2019) using ∆ “

∆RMpM̄q and ∆ “ ∆SDRMpM̄q

Note: Confidence sets for ∆SDMBpM̄q are truncated at ˘50 to preserve readability.
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This document provides additional, supplementary materials for “An Honest Approach to
Parallel Trends” by Ashesh Rambachan and Jonathan Roth. Sections E-F provide statements
and proofs of uniform asymptotic results. Section G provides additional simulation results.

E Uniform asymptotic results

The main text of the paper considers a finite sample normal model, which is motivated as
an asymptotic approximation to a variety of econometric settings of interest. In this section,
we show that our main results for the conditional approach translate to uniform asymptotic
results for a large class of data-generating processes. We refer the reader to Appendix C of
Armstrong and Kolesar (2020) for uniformity results for fixed length confidence intervals.33

Let us briefly highlight the difference between the uniform asymptotic results here and
those in ARP. First, our size control results for the conditional approach are complementary
to those in ARP, as we provide size control results under somewhat weaker conditions specific
to our more specialized setting. For instance, the results in ARP rule out degeneracy in the
distribution of η̂ that can arise when the matrixA has linearly dependent rows (as occurs, e.g.,
when ∆ “ ∆SDPBpMq). Second, we provide uniform asymptotic versions of our consistency
and local asymptotic power results, which are new to this paper and do not have analogs in
ARP.

E.1 Assumptions

Throughout this section, we fix ∆ “ tAδ ď du for some A with all non-zero rows, and assume
that ∆ is non-empty. We consider a class of data-generating processes, indexed by P P P ,
under which

?
npβ̂n ´ βP q is asymptotically normal, where the asymptotic mean βP can be

33We note, however, that the setting of Armstrong and Kolesar (2020) differs from ours in that they
consider a local-to-0 setting in which ∆ shrinks with sample size.
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decomposed as the sum of δP P ∆ and MpostτP with τP P RT̄ .34 The parameter of interest is
θP :“ l1τP , for some fixed l ‰ 0.

Assumption 5. Let BL1 denote the set of Lipschitz functions which are bounded by 1 in
absolute value and have Lipschitz constant bounded by 1. We assume

lim
nÑ8

sup
PPP

sup
fPBL1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
EP

”

fp
?
npβ̂n ´ βP qq

ı

´ E rfpξP qs
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
“ 0,

where ξP „ N p0, ΣP q, and βP “ δP `MpostτP for δP P ∆ and τP P RT̄ .

Convergence in distribution is equivalent to convergence in bounded Lipschitz metric (see
Theorem 1.12.4 in van der Vaart and Wellner (1996)), so Assumption 5 formalizes the notion
of uniform convergence in distribution of

?
npβ̂n ´ βP q to a N p0, ΣP q variable under P .

Our next assumption requires that the eigenvalues of the asymptotic variance of the
event-study coefficients be bounded above and away from zero.

Assumption 6. Let S denote the set of matrices with eigenvalues bounded below by
¯
λ ą 0

and above by λ̄ ě
¯
λ. For all P P P, ΣP P S.

Next, we assume that there is a uniformly consistent estimator of the variance of β̂.

Assumption 7. We have an estimator Σ̂n that is uniformly consistent for ΣP ,

lim
nÑ8

sup
PPP

PP
´

||Σ̂n ´ ΣP || ą ε
¯

“ 0,

for all ε ą 0.

In order to more clearly articulate our next assumption, it is useful to first present the
following result, which characterizes the set of dual vertices under Assumption 6.

Lemma E.1. Let F pΣq :“ tγ : Ã1
p¨,´1qγ “ 0, σ̃pΣq1γ “ 1, γ ě 0u be the feasible set of the

dual problem, where σ̃pΣq is the vector containing the square-roots of the diagonal elements
of AΣA1. Let V pΣq denote the set of vertices of F pΣq. Then there exists a finite set of
distinct, non-zero vectors γ̄1, ..., γ̄J such that ||γj|| “ 1 and γj ě 0 for all j, and for any Σ

positive definite

V pΣq “ tc1pΣqγ̄1, ..., cJpΣqγ̄Ju,

where cjpΣq “ pγ̄1jσ̃pΣqq´1.

34To avoid notational clutter, we drop the additional subscript “post” on τ and simply index τ by the
underlying data generating process P .
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For ease of notation, we define γjpΣq :“ cjpΣqγ̄j. With this notation in hand, we can then
state our next assumption.

Assumption 8. Suppose γ̄1jA ‰ 0. Then for all i ‰ j and all P P P,

pγjpΣP q ´ γipΣP qq
1AΣPA

1
pγipΣP q ´ γjpΣP qq ą c,

for some constant c ą 0.

Assumption 8 guarantees that there are not two vertices of the feasible set that produce
non-degenerate objective values in the dual problem (16) and are perfectly correlated asymp-
totically. Assumption 8 holds trivially if the minimal eigenvalue of AΣPA

1 is bounded from
below. Note that under Assumption 5, AΣPA

1 is the asymptotic variance of
?
nAβ̂n, and

thus corresponds with the asymptotic variance of
?
nỸnpθ̄q, the moments used in the con-

ditional and hybrid tests scaled by
?
n. Assumption 8 can be dispensed with if we use a

modified version of the conditional and hybrid tests that adds full-rank normal noise to Ỹn,
which ensures that the asymptotic covariance of the scaled moments is positive definite.

E.2 Size control

We now establish uniform asymptotic size control for the conditional test. ARP establish
uniform asymptotic size control under high-level conditions, whereas here we show size con-
trol in our setting under the lower-level conditions introduced above. These conditions are
somewhat weaker than the higher-level conditions in ARP. For instance, we allow for the
possibility that η̂ has zero variance conditional on a set of optimal multipliers, which is ruled
out by assumptions in ARP but can be shown to arise in our context, e.g. for ∆ “ ∆SDPB.

As in ARP, we show size control for a modified version of the conditional and hybrid
tests that never rejects if the critical value is below a certain finite value ´

¯
C. That is, we

consider ψC˚,α “ ψCα ¨ 1rη̂ ě ´¯
Cs, for ψCα an indicator for whether the α-level conditional test

rejects and η̂ the solution to the linear program (15). We do this for technical reasons to
avoid complications related to sequences where both η̂ and the critical values diverge to ´8.
However, this modification is reasonable on substantive grounds, since when η̂ is very small
all of the moments are satisfied in the data, and the conditional test (potentially) rejects
only due to extreme realizations of the critical values. Moreover, we show in Section E.4
below that the modified tests retain desirable asymptotic power properties.

Under the assumptions stated in the previous section, the modified conditional test uni-
formly controls size.

Proposition E.1. Suppose Assumptions 5 to 8 hold. Then

S-3



lim sup
nÑ8

sup
PPP

EP
„

ψC˚,αpβ̂n, A, d, θP ,
1

n
Σ̂nq



ď α.

E.3 Consistency

We now provide conditions under which the conditional test is uniformly consistent. Specifi-
cally, we establish a uniform asymptotic version of the consistency result given in Proposition
4.1 in the context of the finite sample normal model.

To show uniform consistency for the conditional test, we require some additional assump-
tions on the asymptotic distribution of the estimated covariance matrix Σ̂.

Assumption 9. Let Wn “ ppβ̂n ´ βP q
1, pvecpΣ̂nq ´ vecpΣP qq

1q1, where vecpΣq is the vector
of the elements of the matrix Σ. We assume

lim
nÑ8

sup
PPP

sup
fPBL1

ˇ

ˇ

ˇ

ˇEP
“

fp
?
nWnq

‰

´ E
“

fpξ`P q
‰ˇ

ˇ

ˇ

ˇ “ 0,

where ξ`P „ N p0, VP q, VP “

˜

ΣP VP,βΣ

VP,Σβ VP,Σ

¸

and βP “ δP ` MpostτP for δP P ∆ and

τP P RT̄ .

Assumption 10. For all P P P, the matrix VP defined in Assumption 9 lies in a compact set
V. Additionally, ΣP has eigenvalues bounded between

¯
λ ą 0 and λ̄, and pΣP´VP,βΣV

´1
P,ΣVP,Σβq

has eigenvalues bounded below by λ̃ ą 0.

Assumption 9 strengthens Assumption 5 to require that the pair pβ̂, Σ̂q converge uniformly
to a joint normal distribution centered at their respective means. Although somewhat more
restrictive, we note that event-study estimates are often estimated via OLS, and standard
covariance estimators for OLS, including cluster-robust variance estimators, produce asymp-
totically normal estimates as the number of clusters grows large (Hansen, 2007; Stock and
Watson, 2008; Hansen and Lee, 2019). Note that we do not impose that the asymptotic
distributions of β̂ and Σ̂ are independent, as would occur in linear models if the linear model
is properly specified. Likewise, Assumption 10 strengthens Assumption 6 to require that the
asymptotic variance matrix of the pair pβ̂, Σ̂q lies in a compact set, and that the error in β̂
is not perfectly colinear with the error in Σ̂. The latter condition can be ensured to hold by
adding full-rank noise to β̂. With these added conditions, we obtain asymptotic consistency
for the (modified) conditional test.

Proposition E.2. Suppose Assumptions 7 to 10 hold. Then for any x ą 0,
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lim
nÑ8

inf
PPP

EP
„

ψC˚,αpβ̂n, A, d, θ
ub
P ` x,

1

n
Σ̂nq



“ 1.

E.4 Local Asymptotic Power

We now establish conditions under which the power of the conditional test converges uni-
formly to the power envelope.

Recall that in the finite sample normal model, we showed that the local power of the
conditional test converged to the power envelope under Assumption 4, which intuitively
guaranteed that the “right” number of moments bind at the edge of the identified set. We
define Pε to be the set of distributions for which this condition holds and the non-binding
moments are slack by at least ε.

Definition 3. For ε ą 0, let Pε denote the set of distributions P P P such that Assumption
4 holds when setting δA “ δP , and for which all elements of the vectors εBpδ˚q and εBpδ˚˚q as
defined in Assumption 4 are bounded below by ε.

Recall from Appendix A.2 that our Assumption 4 is implied by linear independence constraint
qualification (LICQ). Assuming that P P Pε is thus similar to a uniform LICQ assumption,
as in e.g., Gafarov (2019) and Cho and Russell (2018). We note, however, that we require
this assumption only for our uniform local asymptotic power results, and not for uniform
asymptotic size control.

Our next result states that the local power of the conditional test converges to the power
envelope in the limiting model uniformly over Pε. This can be viewed as an asymptotic
version of Proposition 4.2.

Proposition E.3. Suppose Assumptions 5 to 7 hold. Let θubP “ supSp∆, βP q. Then for any
ε ą 0 and x ą 0,

lim
nÑ8

sup
PPPε

ˇ

ˇ

ˇ

ˇ

EP
„

ψC˚,αpβ̂n, A, d, θ
ub
P `

1
?
n
x,

1

n
Σ̂nq



´ ρ˚pP, xq

ˇ

ˇ

ˇ

ˇ

“ 0,

where

ρ˚pP, xq “ lim
nÑ8

sup
Cα,nPIαp∆, 1

n
ΣP q

PpδP ,τP , 1
n

ΣP q

ˆ

pθubP `
1
?
n
xq R Cα,n

˙

is the optimal limiting power of a size-α test in the finite sample normal model using
pδA, τA,Σ

˚q “ pδP , τP ,ΣP q, provided that ´
¯
C, the threshold for the modified conditional

test, is set sufficiently small.

S-5



If α P p0, .5s, then C̄ “ 0 is sufficient for the conclusion of Proposition E.3 to hold.
Proposition E.3 shows that the power of the conditional test converges to the power of

the optimal test in the limit of the finite sample normal model as n Ñ 8. Using results
from Müller (2011), we next show that that the power bound ρ˚pP, xq from the limiting
model is an upper bound on the asymptotic power of a large class of confidence sets that
control size asymptotically. In particular, we consider the set of confidence sets that i) can
be written as functions of

?
nβ̂n and Σ̂n, ii) control size asymptotically over all sequences

of distributions that induce a normal limit, and iii) are invariant to transformations that
preserve the identified set for all values of β. To formalize iii), let AK “ tv : Av “ 0u

denote the null space of A and let G be the group of transformations of the form gv :

β ÞÑ β ` v for v P AK. It is then immediate from the definition of the identified set,
Sp∆, βq “ tθ : Dδ P ∆, τpost s.t. β “ δ `Mpostτpost, l

1τpost “ θu, that Sp∆, βq “ Sp∆, gvβq
for any β and gv P G. By iii) we mean that we will consider the class of confidence sets such
that Cp

?
nβ̂, Σ̂q “ Cpgvp

?
nβ̂q, Σ̂q for all gv P G and all β̂.

Proposition E.4. Suppose that Cnp¨, ¨q is such that

lim sup
nÑ8

PPn
´

θPn R Cnp
?
nβ̂n, Σ̂nq

¯

ď α

for any sequence of distributions Pn such that
?
npβ̂n ´ βPnqq

Pn
Ñd N p0, Σ˚q, Σ̂n

Pn
Ñp Σ˚,

where βPn “ δPn `MpostτPn and θPn “ l1τPn for some sequences τPn P RT̄ and δPn P ∆.
Suppose that for some distribution P ˚,

?
npβ̂n´βP˚q

P˚
Ñd N p0, Σ˚q and Σ̂n

P˚
Ñp Σ˚, where

βP˚ “ δP˚ `MpostτP˚ for δP˚ P ∆ satisfying Assumption 4. Let θubP˚ :“ supSp∆, βP˚q be the
upper bound of the identified set given βP˚. Then, for any x ą 0,

lim sup
nÑ8

PP˚
ˆ

θubP˚ `
1
?
n
x R Cnp

?
nβ̂n, Σ̂nq

˙

ď ρ˚pP ˚, xq,

where ρ˚pP ˚, xq is defined in Proposition E.3.

F Proofs of uniform asymptotic results

F.1 Proofs and Auxiliary Lemmas for Uniform Size Control

Proof of Lemma E.1

Proof. Recall from Section 8.5 of Schrijver (1986) that v is a vertex of the polyhedron
P “ tx P RK : Wx ď bu iff v P P and WpJ ,¨qx “ bJ for J a set of indices such that WpJ ,¨q

has K independent rows. It follows that v P V pΣq iff v ě 0 and there exists J such that
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WJ :“

¨

˚

˝

Ã1
p¨,´1q

´IpJ ,¨q

σ̃1

˛

‹

‚

has row rank equal to K, and WJ v “

¨

˚

˝

0

0

1

˛

‹

‚

, where K is the number of rows of A.

Now, let J be the set of indices J such that W̃J :“

˜

Ã1
p¨,´1q

´IpJ ,¨q

¸

has exactly K ´ 1

linearly independent rows and there exists a vector vJ ‰ 0 such that W̃J v “ 0 and vJ ě 0.
Since by construction W̃J has rank K ´ 1 and K columns, its nullspace is 1-dimensional. It
is then immediate that for each J P J , there is a unique vector v̄J ě 0 such that ||v̄J || “ 1

and W̃J v̄J “ 0. Moreover, J is finite, since there are a finite number of possible subindices
of I, and thus we can write tv̄J : J P J u “ tv̄1, ..., v̄Ju for distinct vectors v̄1, ..., v̄J .

It now remains to show that V pΣq “ tc1pΣqv̄1, ..., cJpΣqv̄Ju, for cj as defined above.
First, suppose that v “ cjpΣqv̄j for some j. By construction, Ã1

p¨,´1qv “ 0, v ě 0, and σ̃1v “

pσ̃1vjq
´1pσ̃1vjq “ 1, and so v P F . Additionally, there exists J such that W̃J “

˜

Ã1
p¨,´1q

´IpJ ,¨q

¸

has rank K ´ 1 and W̃J v “ 0. From the fact that W̃J v “ 0, whereas σ̃1v “ 1, we see that σ̃1

must be linearly independent from the rows of W̃J , and thus WJ “

˜

W̃J

σ̃1

¸

has rank K.

It follows that v P V pΣq.
Next, suppose that v P V pΣq. Then v ě 0, and there exists J such that

WJ :“

¨

˚

˝

Ã1
p¨,´1q

´IpJ ,¨q

σ̃1

˛

‹

‚

has row rank equal to K, and WJ v “

¨

˚

˝

0

0

1

˛

‹

‚

. Let W̃J “

˜

Ã1
p¨,´1q

´IpJ ,¨q

¸

. Note that since

W̃J v “ 0, whereas σ̃1v “ 1, σ̃1 must be linearly independent of the other rows of WJ , from
which it follows that W̃ has row rank K ´ 1. Thus, J P J , and so v “ cv̄j for some j and
c ą 0. Since σ̃1v “ 1, we have cσ̃1v̄j “ 1, which implies c “ pσ̃1v̄jq´1, which gives the desired
result.
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Proof of Proposition E.1

Proof. First, note that by Lemma C.2, ψCα pβ̂n, A, d, θP ,
1
n
Σ̂nq “ ψCα p

?
nβ̂n, A,

?
nd,

?
nθP , Σ̂nq.

Additionally, we show in the proof to Lemma C.2 that the values of η̂ for these two problems
are the same, from which it follows that the modified tests are tests are equivalent as well,
ψC˚,αpβ̂n, A, d, θP ,

1
n
Σ̂nq “ ψC˚,αp

?
nβ̂n, A,

?
nd,

?
nθP , Σ̂nq. It thus suffices to show that

lim sup
nÑ8

sup
PPP

EP
”

ψC˚,αp
?
nβ̂n, A,

?
nd,

?
nθP , Σ̂nq

ı

ď α.

Towards contradiction, suppose the proposition is false. Then, following Andrews, Cheng
and Guggenberger (2020), there exists a sequence of distributions Pm and an increasing
sequence of sample sizes nm such that

lim inf
mÑ8

EPm
”

ψC˚,αp
?
nmβ̂nm , A,

?
nmd,

?
nmθP , Σ̂nmq

ı

ě α ` ω, (54)

for some ω ą 0.
Define Ym :“

?
nm

´

Aβ̂nm ´ d´ Ãp¨,´1qθPm

¯

and X :“ Ãp¨,´1q. Then,

ψC˚,αp
?
nmβ̂nm , A,

?
nmd,

?
nmθP , Σ̂nmq “ ψC˚,αpYm, X,AΣ̂nmA

1
q.

Further, define Ỹm :“ Ym´ Ãp¨,´1qΓp´1,¨qp
?
nmτPmq For notational convenience, let Σm :“

ΣPm and Σ̂m :“ Σ̂nm . By Lemma 16 in ARP, ψC˚,αpYm, X,AΣ̂mA
1q “ ψC˚,αpỸm, X,AΣ̂mA

1q.
Additionally, observe that

Ỹm “
?
nm

´

Aβ̂nm ´ d´ Ãp¨,1qθPm ´ Ãp¨,´1qΓp´1,¨qτPm

¯

“
?
nm

´

Aβ̂nm ´ d´ Ãp¨,1ql
1τPm ´ Ãp¨,´1qΓp´1,¨qτPm

¯

“
?
nm

˜

A

˜

β̂nm ´

˜

0

τPm

¸¸

´ d

¸

,

where the first equality uses the definition of θPm “ l1τPm and the second equality follows
from Lemma F.5. This implies that

Ỹm “ A
?
nm

˜

β̂nm ´ δPm ´

˜

0

τPm

¸¸

`
?
nm pAδPm ´ dq . (55)

Next, observe that by Assumption 5, δP P ∆ “ tδ : Aδ ď du for all P , and so
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?
nm pAδPm ´ dq ď 0. We can therefore extract a subsequence m1 such that

?
nm1

`

AδPm1
´ d

˘

1
Ñ µ˚1 P RY t´8u.

Passing to further subsequences, we can extract a subsequence mK (for K the number of
rows of A) along which

?
nmK

`

AδPmK ´ d
˘

Ñ µ˚ P tRY t´8uuK .

Additionally, by Assumption 6, ΣPm is contained within a compact set, and so we can extract
a further subsequence mK`1 along which ΣmK`1

Ñ Σ˚ for some Σ˚ P S. For notational
ease, we will assume that these convergences hold for the original sequence pm,nmq for the
remainder of the proof

Now, equation (55) along with Assumptions 5 and 7 and the continuous mapping theorem
imply that

pỸm, Σ̂mq
d
ÝÑ pξ ` µ˚,Σ˚q,

for ξ „ N p0, AΣ˚A1q. Observe from (55) that for all m, Ỹm P colpAq ` t´a ¨ d : a ą 0u,
where colpAq is the column space of A and ` represents the Minkowski sum. Likewise, if
ξ „ N p0, AΣ˚A1q, then ξ “ AξΣ˚ for ξΣ˚ „ N p0, Σ˚q, and so ξ is supported on colpAq.
Thus, ξ`µ˚ is supported on colpAq`µ˚. We then see that both Ỹm and ξ`µ˚ are supported
on Ω :“ colpAq ` pt´a ¨ d : a P Ru Y tµ˚uq.

Suppose first that maxγPV pΣ˚q γ
1µ˚ “ ´8. Note that η̂m “ maxγPV pΣ̂mq γ

1Ỹm. From
Lemma E.1, V pΣq “ tc1pΣqγ̄1, ..., cJpΣqγ̄Ju, where the functions cjpΣq are continuous and by
Lemma F.1, cjpΣq˚ ě ´

¯
c ą 0 for all j. Since maxγPV pΣ˚q γ

1µ˚ “ ´8, we have cjpΣ˚qγ̄1jµ˚ “
´8 for all j. But the continuous mapping theorem then implies that for all j, cjpΣ̂mqγ̄

1
jỸm Ñd

cjpΣ
˚qγ̄1jpξ ` µ˚q “ ´8, and hence η̂m Ñp ´8. Thus, P pη̂m ă ´Cq Ñ 1, and so our tests

never reject asymptotically, which contradicts size control failing. For the remainder of the
proof, we assume that maxγPV pΣ˚q γ

1µ˚ is finite. (Note that since γ̄j ě 0 and µ˚ ď 0, we
cannot have maxγPV pΣ˚q γ

1µ˚ “ 8.)
Next, note that it follows readily from the construction of the (unmodified) conditional

test in Section 4.2 that the unmodified conditional test rejects iff

ppY,Σq :“ Pζ
`

ζ ă η̂pY,Σq | ζ P rvlopY,Σq, vuppY,Σqs, ζ „ N
`

0, σ2
ηpY,Σqq

˘˘

ą 1´ α,

where the functions η̂, σ2
η, vlo and vup are defined as follows. We define η̂pY,Σq to be the
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conditional test statistic using Y and Σ,

η̂pY,Σq :“ max
γPV pΣq

γ1Y,

We define σ2
ηpY,Σq to be the estimated variance of γ1˚Y for γ˚ P arg maxγPV pΣq γ

1Y . That is,

σ2
ηpY,Σq “ γ1˚AΣA1γ˚,

Note that σ2
ηpY,Σq is only well-defined if γ1˚AΣA1γ˚ is the same for all γ˚ P arg maxγPV pΣq γ

1Y .
We will show below, however, that this occurs with probability 1 in the limiting model.

If σ2
ηpY,Σq ą 0, then we define vlopY,Σq and vuppY,Σq to be the minimum and maximum

of the set

C “ tc : max
γPV pΣq

γ1

˜

Sγ˚ `
Σ̂γ˚

γ˚Σ̂γ˚
c

¸

u,

where as before γ˚ is an element of arg maxγPV pΣq γ
1Y and we define

Sγ˚ “

˜

I ´
Σ̂γ˚γ

1
˚

γ1˚Σ̂γ˚

¸

Y.

On the other hand, if σ2
ηpY,Σq “ 0, then we define vlo “ ´8 and vup “ 8. This is a

notational convenience that allows us to capture the fact that when σ2
η “ 0, the unmodified

conditional test rejects iff η̂pY,Σq ą 0, since P pζ ă η̂ | ζ „ N p0, 0qq “ 1rη̂ ą 0s.
Since the modified conditional test rejects only if the unmodified conditional test rejects,

(54) thus implies that

lim inf
mÑ8

PPm
´

ppỸm, Σ̂q ą 1´ α
¯

ě α ` ω. (56)

Lemma F.3 shows that the function pp¨, ¨q is continuous at pξ ` µ˚,Σ˚q for almost every
ξ „ N p0, AΣ˚A1q. The continuous mapping theorem then implies that

ppỸm, Σ̂q
d
ÝÑ ppξ ` µ˚,Σ˚q.

Moreover, Lemma F.4 implies that the distribution of ppξ ` µ˚,Σ˚q does not have a mass
point at 1´ α, and hence

PPm
´

ppỸm, Σ̂q ą 1´ α
¯

Ñ P pppξ ` µ˚,Σ˚q ą 1´ αq .
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However, since the conditional test controls size in the finite-sample normal model,

Pξ pppξ ` µ˚,Σ˚q ą 1´ αq ď α,

and thus
lim inf
mÑ8

PPm
´

ppỸm, Σ̂q ą 1´ α
¯

ď α,

which contradicts (56).

Lemma F.1. Suppose Assumption 6 holds. Then for any x and Σ P S,
¯
λx1x ď x1Σx ď λ̄x1x.

Additionally, there exist constants
¯
c ą 0 and c̄ such that for all Σ P S and all j “ 1, ..., J ,

¯
c ď cjpΣq ď c̄, for cjpΣq as defined in Lemma E.1.

Proof. By the singular value decomposition, we can write Σ “ UΛU 1, where U is a unitary
matrix (UU 1 “ I) and Λ is the diagonal matrix with the eigenvalues of Σ on the diagonal. By
Assumption 6, these eigenvalues are bounded between

¯
λ ą 0 and λ̄ ě

¯
λ. Thus, for any x, we

have x1Σx “ pU 1xq1ΛpU 1xq1 “
ř

i λipU
1xq2i . It follows that x1Σx ď

ř

i λ̄pU
1xq2i “ λ̄x1UU 1x “

λ̄x1x. It can be shown analogously that x1Σx ě
¯
λx1x. Now, recall that cjpΣq “ pγ̄1jσ̃pΣqq´1,

where σ̃2
i “ A1

pi,¨qΣApi,¨q. Let m̄A “ maxiA
1
pi,¨qApi,¨q and ¯

mA “ miniA
1
pi,¨qApi,¨q, and note that

both m̄ and
¯
m are strictly positive since A is assumed to have no all-zero rows. It then

follows from the previous discussion that σ̃i P r
?

¯
λ

¯
mA,

a

λ̄m̄As :“ rσ̃lb, σ̃ubs. Moreover, since
γ̄j ě 0 and γ̄j ‰ 0 for all j, we have that γ̄1jσ̃ ě maxtγ̄juσ̃lb ě minjtmaxtγ̄juuσ̃lb ą 0, where
the last inequality uses the fact that the set γ̄1, ...γ̄J is finite. Likewise, for K the dimension
of γ̄j, we have γ̄1jσ̃ ď K maxtγ̄juσ̃ub ď maxjtmaxtγ̄juσ̃ubu ă 8. We have thus shown that
γ̄1jσ̃pΣq is bounded between two positive finite values, and thus the same is true of its inverse,
which suffices for the result.

Lemma F.2. Let µ˚, Σ˚, and Ω be as defined in the proof to Proposition E.1, and assume
maxγPV pΣ˚q γ

1µ˚ is finite and Assumption 8 holds. Let NpΣ˚q be an open set containing Σ˚.
Then η̂pY,Σq, σ2

ηpY,Σq, v
lopY,Σq, vuppY,Σq – when viewed as functions over Ω ˆ NpΣ˚q –

are continuous in pY,Σq at pξ ` µ˚,Σ˚q for almost every ξ „ N p0, AΣ˚A1q. Additionally,
for almost every ξ, one of the following holds:

1) There is a neighborhood of pξ ` µ˚,Σ˚q on which σ2
ηpY,Σq ą 0 and vlopY,Σq ă vuppY,Σq.

2) There is a neighborhood of pξ`µ˚,Σ˚q on which η̂pY,Σq ď 0, σ2
ηpY,Σq “ 0 and vlopY,Σq “

´8, vuppY,Σq “ 8.

Proof. We first show that η̂pY,Σq is continuous. Lemma E.1 implies that
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η̂pY,Σq :“ max
γPV pΣq

γ1Y “ maxtc1pΣqγ̄
1
1Y, ..., cJpΣqγ̄

1
JY u,

where the functions cjpΣq are continuous. We claim that each of the functions in the max
above are continuous in pY,Σq at pξ ` µ˚,Σ˚q. If Y were finite-valued, then this would hold
trivially. However, since some elements of Y may be equal to ´8, we additionally need to
show that there is a neighborhood of Σ˚ such that for all Σ in this neighborhood and all j,
the elements of cjpΣqγ̄j do not change from 0 to non-zero or vice versa. However, by Lemma
F.1, cjpΣ˚q ě

¯
c ą 0 for all j, and so for Σ sufficiently close to Σ˚, cjpΣq ą 0, and thus each

element of cjpΣqγ̄j has the same sign (0 or positive) as the corresponding element of γ̄j, as
we desired to show.

Next, define V̂ pY,Σq :“ arg maxγPV pΣq γ
1Y . We claim that with probability 1, either

V̂ pξ ` µ˚,Σ˚q is unique, or γ1˚A “ 0 for all γ˚ P V̂ pY,Σq. Observe that since ξ is finite with
probability 1 and maxγPV pΣ˚q γ

1µ˚ is finite by assumption, it follows that maxγPV pΣ˚qγ1pξ `
µ˚q is finite with probability 1. Let γ1, γ2 P V pΣ˚q. Note that γ1, γ2 P V̂ pξ,Σ˚q only if
pγ1 ´ γ2q

1ξ “ pγ2 ´ γ1q
1µ˚. Observe further that pγ1 ´ γ2q

1ξ is normally distributed with
variance pγ1 ´ γ2q

1AΣ˚A1pγ1 ´ γ2q
1. Thus, pγ1 ´ γ2q

1ξ is equal to any particular constant
with positive probability only if pγ1 ´ γ2q

1AΣ˚A1pγ1 ´ γ2q
1 “ 0. Since Σ˚ is positive definite,

pγ1´γ2q
1AΣ˚A1pγ1´γ2q

1 “ 0 iff pγ1´γ2q
1A “ 0. However, by Assumption 8, pγ1´γ2q

1A “ 0

only if γ11A “ γ12A “ 0. It follows that at most one of γ1 and γ2 are in V̂ with probability
1, or γ11A “ γ12A “ 0. Since the set V pΣ˚q is finite, it follows that either V̂ pξ ` µ˚,Σ˚q is
unique, or all of its elements have γ1˚A “ 0, as needed.

Suppose first that every γ˚ P V̂ pξ ` µ˚,Σ˚q satisfies γ1˚A “ 0. Without loss of generality,
assume that V̂ pξ ` µ˚q “ tc1pΣ

˚qγ̄1, ..., cJ1pΣ
˚qγ̄J1u, where 1 ď J1 ď J . We first claim that

there is a neighborhood of pξ`µ˚,Σ˚q on which maxγPV pΣq γ
1Y “ cjpΣqγ̄

1
jY for some j ď J1.

This is trivial if J1 “ J . If not, let j ď J1 and i ą J1. Since cjpΣ˚qγ̄1jpξ`µ˚q P V̂ pξ`µ˚,Σ˚q
and cipΣ˚qγ̄1ipξ`µ˚q R V̂ pξ`µ˚,Σ˚q, we must have cjpΣ˚qγ̄1jpξ`µ˚q ą cipΣ

˚qγ̄1ipξ`µ
˚q. We

showed above that the functions on both sides of the inequality are continuous in pY,Σq at
pξ ` µ˚,Σ˚q, and thus there exists a neighborhood of pξ ` µ˚,Σ˚q on which the inequality is
preserved, and hence maxγPV pΣq γ

1Y ą cipΣqγ̄
1
jpξ ` Σq. Additionally, since there are finitely

many i ą J1, we can choose a neighborhood such that this holds simultaneously for all
i ą J1, which implies that in this neighborhood V̂ pY,Σq Ď tc1pΣqγ̄1, ..., cJ1pΣqγ̄J1u, as needed.
It follows that σ2

ηpY,Σq “ 0 for all pY,Σq in this neighborhood, since γ̄1jA “ 0 for all
j ď J1, which implies γ̄1jAΣA1γ̄j “ 0. Additionally, note that by definition, vlopY,Σq “ ´8
and vuppY,Σq “ 8 whenever σ2

ηpY,Σq “ 0. Thus, σ2
ηpY,Σq, vlopY,Σq, and vuppY,Σq are

continuous at pξ ` µ˚,Σ˚q.
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To show that ηpY,Σq ď 0 in a neighborhood of pξ`µ˚,Σ˚q, observe that it is immediate
from the definition of Ω that any Y P Ω can be written as Av ´ a1 ¨ d ` a2µ

˚, for v P RK

and a1, a2 ě 0. For any j P t1, ..., J1u, γ̄1jA “ 0, and thus γ̄1jY “ ´a1γ̄
1
jd` a2γ̄

1
jµ
˚. However,

since γ̄j ě 0 and µ˚ ď 0, we have that a2γ̄
1
jµ
˚ ď 0. Likewise, since ∆ is assumed to be non-

empty, there exists some δ such that Aδ ´ d ď 0. Since γ̄1jA “ 0 and γ̄j ě 0, it follows that
γ̄1jp´dq ď 0. Hence, γ̄1jY ď 0 for any Y P Ω, and thus, in a neighborhood of Σ˚ sufficiently
small such that cjpΣq ě 0, cjpΣqγ̄1jY ď 0. Since we’ve shown that in a neighborhood of
pξ`µ˚,Σ˚q, η̂pY,Σq “ cjpΣqγ̄

1
jY for some j, it follows that ηpY,Σq ď 0 for pY,Σq sufficiently

close to pξ ` µ˚,Σ˚q.
Next, suppose that V̂ pξ ` µ˚q has a single element γ˚ “ cjpΣ

˚qγ̄1jpξ ` µ˚q for some
j P t1, ..., Ju such that γ̄1jA ‰ 0. Without loss of generality, suppose j “ 1. We first
show that V̂ pY,Σq “ c1pΣqγ̄1 in a neighborhood of pξ ` µ˚q. Indeed, since V̂ pξ ` µ˚q “

c1pΣ
˚qγ̄11pξ ` µ˚q, for all i ą 1, c1pΣ

˚qγ̄11pξ ` µ˚q ą cipΣ
˚qγ̄1ipξ ` µ˚q. However, since we’ve

shown the functions on both sides of this inequality to be continuous in pY,Σq at pξ`µ˚,Σ˚q,
there is a neighborhood of pξ ` µ˚,Σ˚q such that for all i ą 1, c1pΣqγ̄

1
1Y ą cipΣqγ̄

1
iY , and

hence V̂ pY,Σq “ c1pΣqγ̄1 in this neighborhood. It follows that in a neighborhood of pξ`µ˚q,
σ2
ηpY,Σq “ c1pΣqγ̄

1
1AΣA1c1pΣqγ̄1, which is clearly continuous in Σ. Additionally, by Lemma

F.1, cpΣ˚q ě
¯
c ą 0, and so σ2

η ě ¯
c2γ̄11AΣ˚A1γ̄1, which is positive since γ11A ‰ 0 and Σ˚

is positive definite. From the continuity of σ2
η, it follows that there is a neighborhood of

pξ ` µ˚,Σ˚q such that σ2
ηpY,Σq ą 0.

Next, consider vlopY,Σq. Let γ˚pΣq “ c1pΣqγ̄1. For ease of notation, we will make the
dependence of γ˚ on Σ implicit where it is clear below. The results above imply that in a
neighborhood of pξ ` µ˚,Σ˚q, vlopY,Σq is the minimum of the set

CpY,Σq “ tc : max
γPV pΣq

γ1
ˆ

Sγ˚pY q `
Σγ˚
γ˚Σγ˚

c

˙

“ cu,

for
Sγ˚pY,Σq “

ˆ

I ´
Σγ˚γ

1
˚

γ1˚Σγ˚

˙

Y.

Rearranging terms, we see that

C “ tc : 0 “ max
γPV pΣq

aγ,γ˚pY q ` bγ,γ˚cu,

where aγ,γ˚pY q :“ γ1Sγ˚pY q and bγ,γ˚ :“
γ1Σγ˚
γ1˚Σγ˚

´ 1. Note that aγ˚,γ˚pY q “ 0 “ bγ˚,γ˚ , so

0 ď maxγPV pΣq aγ,γ˚pY q ` bγ,γ˚c for all c. Moreover, for c “ γ1˚Y , the max is attained at γ˚
by construction. Hence, the set C is non-empty.

Intuitively, if we plot aγ,γ˚pY q ` bγ,γ˚ as a function of c, then each γ P V pΣq defines
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a line, and the set C represents the values of c for which 0 is the upper envelope of this
set. It follows that the lower bound of C is the maximal x-intercept of a line of the form
aγ,γ˚pY q ` bγ,γ˚c with bγ,γ˚ ă 0. Hence,

vlopY,Σq “ max
tγPV pΣqztγ˚u : bγ,γ˚ă0u

´aγ,γ˚pY q

bγ,γ˚
.

Recall that by Lemma E.1, V pΣq :“ tγ1pΣq, ..., γJpΣqu, where γjpΣq :“ cjpΣqγ̄j and cjpΣq is
continuous. Additionally, we showed earlier in the proof that for all j, cjpΣqγ̄1jY is continuous
in a neighborhood of pξ ` µ˚,Σ˚q. It is then immediate from the definitions of aγ,γ˚pY q and
bγ,γ˚ that for all j, aγjpΣq,γ˚pΣqpY q and bγjpΣq,γ˚pΣq are continuous in pY,Σq. Without loss of
generality, suppose that for 2 ď k ď k1, bγkpΣ˚q,γ˚pΣ˚q ă 0; for k1 ă k ď k2, bγkpΣ˚q,γ˚pΣ˚q “ 0;
and for k ą k2, bγkpΣ˚q,γ˚pΣ˚q ą 0. From the continuity of bγjpΣq,γ˚pΣq, it is clear that in a
neighborhood of pξ ` µ˚,Σ˚q, bγkpΣq,γ˚pΣq ą 0 for all 2 ď k ď k1 and bγkpΣq,γ˚pΣq ă 0 for all
k ą k2. Hence, in this neighborhood,

vlopY,Σq “ max

"

max
γkpΣq : 2ďkďk1

´aγkpΣq,γ˚pΣq
bγkpΣq,γ˚pΣq

, max
γPV 0pΣq

´aγ,γ˚pΣq
bγ,γ˚pΣq

*

, (57)

where

V 0
pΣq :“ tγkpΣq : k1 ă k ď k2, bγkpΣq,γ˚pΣq ă 0u

and we define the max of an empty set to be ´8. It is clear from the continuity of the
functions a and b that the inner max on the left side of (57) is continuous. To show that vlo

is continuous at pξ`µ˚,Σ˚q, it suffices to show that for any sequence pY,Σq Ñ pξ`µ˚,Σ˚q,
the max on the right hand side of (57) converges to ´8. To do this, observe that by
construction, aγ,γ˚pY q ` bγ,γ˚ ¨ γ

1
˚Y “ γ1Y ´ γ1˚Y . Since for any k ą 1, γ˚pΣ˚q1pξ ` µ˚q ą

γkpΣ
˚q1pξ`µ˚q, it follows that aγkpΣ˚q,γ˚pΣ˚qpξ`µ

˚q`bγkpΣ˚q,γ˚pΣ˚q ¨pξ`µ
˚q ă 0. Additionally,

bγkpΣ˚q,γ˚pΣ˚qpξ`µ
˚q “ 0 for k P pk1, k2s, and so for such values of k, aγkpΣ˚q,γ˚pΣ˚qpξ`µ

˚q ă 0.
However, this implies that for any sequence pY,Σq Ñ pξ ` µ˚q and k P pk1, k2s, we have
´aγkpΣq,γ˚pΣqpY q approaching a positive limit, and bγkpΣq,γ˚pΣq approaching 0. For values of
pY,Σq where bγkpΣq,γ˚pΣq ą 0, it follows that ´aγkpΣq,γ˚pΣqpY q{bγkpΣq,γ˚pΣq becomes arbitrarily
negative, whereas for values of pY,Σq where bγkpΣq,γ˚pΣq ě 0, γk is not included in V 0. It
is then immediate that the max on the right hand side of (57) converges to ´8, which
suffices to establish the continuity of vlo at pξ`µ˚,Σ˚q. The continuity of vup can be shown
analogously.

To complete the proof, we now demonstrate that in a neighborhood of pξ`µ˚q, vlopY,Σq ă
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vuppY,Σq for almost every ξ. Note that since we have shown vlo and vup to be continuous,
it suffices to show that vlopξ ` µ˚,Σ˚q ă vuppξ ` µ˚,Σ˚q. We showed above that for almost
every ξ, either V̂ pξ`µ˚q contains only elements such that γ1A “ 0, or V̂ pξ`µ˚q has a unique
element such that γ1A ‰ 0. In the former case, we showed that vlo “ ´8 and vup “ 8.
Suppose we are in the latter case. We showed that vlopξ`µ˚,Σ˚q is the x-intercept of a line
of the form a ` b ¨ c, where b ă 0 and a ` b ¨ η̂ ă 0. Hence, vlopξ ` µ˚,Σq ă η̂pξ ` µ˚,Σq.
However, by construction vlo ď η̂ ď vup, and thus vlo ă η̂ implies vlo ă vup, which completes
the proof.

Lemma F.3. Let µ˚, Σ˚, and Ω be as defined in the proof to Proposition E.1, and assume
maxγPV pΣ˚q γ

1µ˚ is finite. Let NpΣ˚q be an open set containing Σ˚. Define p : ΩˆNpΣ˚q Ñ

r0, 1s by

ppY,Σq :“ Pζ
`

ζ ă η̂pY,Σq | ζ P rvlopY,Σq, vuppY,Σqs, ζ „ N
`

0, σ2
ηpY,Σq

˘˘

.

Then ppY,Σq is continuous in both arguments at pξ`µ˚,Σ˚q for almost every ξ „ N p0, AΣ˚A1q

and Σ˚ P S non-stochastic.

Proof. From Lemma F.2, for almost every ξ, the functions η̂, vlo, vup, σ2
η are continuous at

pξ ` µ˚,Σ˚q. Additionally, for almost every ξ, either

1) There is a neighborhood of pξ ` µ˚,Σ˚q on which σ2
ηpY,Σq ą 0 and vlopY,Σq ă vuppY,Σq,

or

2) There is a neighborhood of pξ`µ˚,Σ˚q on which η̂pY,Σq ď 0, σ2
ηpY,Σq “ 0 and vlopY,Σq “

´8, vuppY,Σq “ 8.

First, suppose 1) holds. Note that for vlo ă vup and ση ą 0,

Pζ
`

ζ ă η̂ | ζ P rvlo, vups, ζ „ N
`

0, σ2
ηq
˘˘

“
Φpη̂{σηq ´ Φpvlo{σηq

Φpvup{σηq ´ Φpvlo{σηq
,

which is clearly continuous in η̂, vlo, vup, and ση. The continuity of ppY,Σq then follows from
the continuity of η̂, vlo, vup, and ση.

Next, suppose 2) holds. Note that

Pζ pζ ă η̂ | ζ P r´8,8s, ζ „ N p0, 0qq “ 1rη̂ ą 0s.

It then follows that when 2) holds, ppY,Σq “ 0 in a neighborhood of pξ ` µ˚,Σ˚q, and thus
is continuous.
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Lemma F.4. Let ppY,Σq be as defined in Lemma F.3, and suppose maxγPV pΣ˚q γ
1µ˚ is finite.

Let ξ „ N p0, AΣ˚A1q. Then for any α P p0, 1q, P pppξ ` µ˚,Σ˚q “ 1´ αq “ 0.

Proof. Note that for vlo ă vup and ση ą 0,

Pζ
`

ζ ă η̂ | ζ P rvlo, vups, ζ „ N
`

0, σ2
ηq
˘˘

“
Φpη̂{σηq ´ Φpvlo{σηq

Φpvup{σηq ´ Φpvlo{σηq
.

Thus, when vlo ă vup and ση ą 0, ppξ ` µ˚,Σ˚q “ 1 ´ α iff η̂ “ ση ¨ c1´αpv
lo, vup, σηq, where

c1´αpv
lo, vup, σηq is the unique value that solves

Φpc1´αq ´ Φpvlo{σηq

Φpvup{σηq ´ Φpvlo{σηq
“ 1´ α.

However, η̂pξ ` µ˚,Σ˚q has a truncated normal distribution conditional on vlopξ ` µ˚,Σ˚q,
vuppξ`µ˚,Σ˚q and σ2

ηpξ`µ
˚,Σ˚q, with truncation points vlopξ`µ˚,Σ˚q and vuppξ`µ˚,Σ˚q

and (untruncated) variance σ2
ηpξ`µ

˚,Σ˚q, and hence is continuously distributed when vlopξ`
µ˚,Σ˚q ă vuppξ ` µ˚,Σ˚q and σ2

ηpξ ` µ˚,Σ˚q ą 0. Thus, conditional on vlopξ ` µ˚,Σ˚q ă

vuppξ ` µ˚,Σ˚q and σ2
ηpξ ` µ˚,Σ˚q ą 0, η̂pξ ` µ˚,Σ˚q “ c1´αpv

lo, vup, σηq with probability
zero.

Additionally, observe that

P pζ ă η̂q | ζ P r´8,8s, ζ „ N p0, 0qq “ 1rη̂ ą 0s.

Hence, whenever η̂pξ ` µ˚,Σ˚q ď 0, vlopξ ` µ˚,Σ˚q “ ´8, vuppξ ` µ˚,Σ˚q “ 8 and σηpξ `
µ˚,Σ˚q “ 0, we have ppξ ` µ˚,Σ˚q “ 0 ‰ 1´ α for almost every ξ.

However, from Lemma F.2, with probability 1 either i) vlopξ ` µ˚,Σ˚q ă vuppξ ` µ
˚,Σ˚q

and σ2
ηpξ ` µ˚,Σ˚q ą 0, or ii) η̂pξ ` µ˚,Σ˚q ď 0, vlopξ ` µ˚,Σ˚q “ ´8 vuppξ ` µ˚,Σ˚q “ 8

and σηpξ ` µ˚,Σ˚q “ 0. The desired result then follows immediately.

Lemma F.5. For any vector v P RT̄ ,

Ãp¨,1qpl
1vq ` Ãp¨,´1qΓp´1,¨qv “ A

˜

0

IT̄

¸

v.
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Proof. By definition,

Ãp¨,1q “ A

˜

0

I

¸

Γ´1Ip¨,1q

Ãp¨,´1q “ A

˜

0

I

¸

Γ´1Ip¨,´1q

Γp´1,¨q “ Ip´1,¨qΓ.

Additionally, the first row of Γ is assumed to be l1, so l1 “ Ip1,¨qΓ. It follows that

Ãp¨,1ql
1v “ A

˜

0

I

¸

Γ´1Ip¨,1qIp1,¨qΓv

Ãp¨,´1qΓp´1,¨qv “ A

˜

0

I

¸

Γ´1Ip¨,´1qIp´1,¨qΓv.

Noting that Ip¨,´1qIp´1,¨q ` Ip¨,1qIp1,¨q “ I, the two equations in the previous display imply
that

Ãp¨,1qpl
1vq ` Ãp¨,´1qΓp´1,¨qv “ A

˜

0

I

¸

Γ´1IΓv “ A

˜

0

I

¸

v,

as needed.

F.2 Proofs and auxiliary lemmas for uniform consistency results

Proof of Proposition E.2

Proof. As in the proof to Proposition E.1, ψC˚,αpβ̂n, A, d, θubP `x,
1
n
Σ̂nq “ ψC˚,αp

?
nβ̂n, A, d,

?
nθubP `

?
nx, Σ̂nq, so it suffices to show that

lim
nÑ8

inf
PPP

EP
”

ψC˚,αp
?
nβ̂n, A,

?
nd,

?
nθubP `

?
nx, Σ̂nq

ı

“ 1.

Towards contradiction, suppose this is false. Then there exists an increasing sequence of
distributions Pm and sample sizes nm such that

lim sup
mÑ8

EPm
”

ψC˚,αp
?
nmβ̂nm , A,

?
nmd,

?
nmθ

ub
Pm `

?
nmx, Σ̂nmq

ı

ď 1´ ω, (58)

for some ω ą 0. Since V is compact, we can extract a subsequence m1 along which VPm1
Ñ
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V ˚ “

˜

Σ˚ V ˚βΣ

V ˚Σβ V ˚Σ

¸

P V. For ease of notation, without loss of generality we assume that

this holds for the original sequence m. Now, let

Ỹm :“
?
nm

´

Aβ̂nm ´ d´ Ãp¨,1qpθ
ub
P ` xq

¯

“
?
nmA

´

β̂nm ´ βPm

¯

`
?
nm

´

AβPm ´ d´ Ãp¨,1qpθ
ub
P ` xq

¯

, (59)

and observe that

ψC˚,αp
?
nmβ̂nm , A,

?
nmd,

?
nmθ

ub
Pm `

?
nmx, Σ̂nmq “ ψC˚,αpỸm, X,AΣ̂nmA

1
q,

where

Ỹm “
?
nmA

´

β̂nm ´ βPm

¯

`
?
nm

´

AβPm ´ d´ Ãp¨,1qpθ
ub
P ` xq

¯

loooooooooooooooooomoooooooooooooooooon

“:λm

. (60)

Now, from Lemma C.13, there exists a constant c ą 0 such that ηpβPm , A, d, θubPnm `
x,Σ˚q ě c ¨ x for ηp¨q defined in (31). Reformulating (31) in terms of its dual, and noting
that the dual vertices are the same as in the dual problem for η̂, we see that there is a dual
vertex γjpΣ˚q P V pΣ˚q such that γjpΣ˚q1

´

AβPm ´ d´ Ãp¨,1qpθ
ub
Pm
` xq

¯

ě c ¨x. From Lemma

E.1, γjpΣ˚q “ cjpΣ
˚qγ̄j, and there is a vertex of V pΣ̂nmq of the form γjpΣ̂nmq “ cjpΣ̂nmqγ̄j,

where the function cjp¨q is continuous. Since Σ̂nm Ñp Σ˚, it follows that γjpΣ̂nmq Ñp γjpΣ
˚q,

and hence γjpΣ̂nmq
1

´

AβPm ´ d´ Ãp¨,1qpθ
ub
Pm
` xq

¯

Ñp c ¨ x ą 0. It is then clear from (60)

that γjpΣ̂nmq
1Ỹm Ñp 8, since the inner product of γjpΣ̂nmq with the first term of (60)

converges in distribution to a normal distribution with mean 0 and finite variance by As-
sumption 7 and Slutksy’s lemma, and the second term converges in probability to 8. Since
γjpΣ̂nmq

1Ỹm is feasible in the dual problem for η̂nm , it follows that η̂nm Ñp 8. It follows that
PPm pη̂nm ă ´¯

Cq Ñ 0, so the modified test agrees with the unmodified test with probability
approaching 1. For simplicity, we therefore consider the unmodified test for remainder of the
proof.

Now, suppose C ą maxt0, z1´αu. We showed in the proof to Lemma C.16 that if η̂pỸ, Σ̃q ą

C, then ψCα pỸ, Σ̃q “ 1 unless σγ˚ :“
b

γ1˚Σ̃γ˚ ą 0 and 1
σγ˚
pη̂ ´ vloq ă ζpCq, where γ˚

is an optimal solution to the dual problem and ζp¨q is a function such that ζpCq Ñ 0 as
C Ñ 8. Additionally, by Lemma F.6, there exists some vertex γ such that 1

σγ˚
pη̂ ´ vloq “

κpγ˚, γq
´

γ1˚Ỹ ´ γ
1Ỹ
¯

, where κpγ, γ˚q “
?
γ1˚Σ̃γ˚

γ1˚Σ̃γ˚´γ1Σ̃γ˚

´

γ1˚Ỹ ´ γ
1Ỹ
¯

ą 0.

To complete the proof, we will show that we can extract a subsequence of m, indexed by
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q, along with a constant C ą maxt0, z1´αu such that

lim sup
qÑ8

PPq
ˆ

tη̂nq ă Cu _

"

tσ̂η,nq ą 0u ^

"

1

σ̂η,nq
pη̂nq ´ v

lo
nqq ă ζpCq

**˙

ď ω{2.

This implies a contradiction of (58), since the event in the probability in the previous display
is a necessary condition for the conditional test to not reject. Further, since we’ve shown
that η̂nm Ñp 8, it suffices to construct a subsequence such that

lim sup
qÑ8

PPq
ˆ

tσ̂η,nq ą 0u ^

"

1

σ̂η,nq
pη̂nq ´ v

lo
nqq ă ζpCq

*˙

ď ω{2. (61)

Now, recall from Lemma E.1 that we can write V pΣ̃q “ tc1pΣ̃qγ̄1, ..., cJpΣ̃qγ̄Ju for positive
continuous functions cj and distinct non-zero vectors γ̄j ě 0. For notational convenience,
let ci,m “ cipΣ̂nmq, c

˚
i “ cipΣ

˚q, γi,m “ ci,mγ̄i, and γ˚i “ c˚i γ̄i. Likewise, for a pair pi, jq let
κij,m “ κpγi,m, γj,mq and κ˚ij “ κpγ˚i , γ

˚
j q. Assumption 7 implies that Σ̂nm Ñp Σ˚. By the

continuous mapping theorem, we therefore have ci,m Ñp c
˚
i , γi,m Ñp γ

˚
i , and κij,m Ñp κ

˚
ij.

Note that if γi,m is optimal and γ̄1iA “ 0, then σ̂η,nm “ pci,mγ̄iq
1AΣ̂nmA

1pci,mγ̄iq “ 0.
Thus, we can only have σ̂η,nm ą 0 if the optimal vertex corresponds with an index i such
that γ̄1iA ‰ 0. To establish (61), it therefore suffices to extract a subsequence q such that for
any pair pi, jq with i ‰ j and γ̄1iA ‰ 0, either

lim
qÑ8

PPq
´

η̂nq “ γ1i,qỸm

¯

“ 0, OR (62)

lim sup
qÑ8

PPq
´!

η̂nq “ γ1i,qỸq

)

^

!

|κij,qpγi,q ´ γj,qq
1Ỹq| ă ζpCq

)¯

ď ω{p2mq, (63)

where m is the number of such pairs pi, jq.
Consider any such pair pi, jq. First, we claim that γ̄1iλm ď ´γ̄1iÃp¨,1qx. To show this, note

that since θubPm P Sp∆, βPmq, Dτ̃ P RT̄´1 such that λm ` Ãp¨,1qx “ Aβnm ´ d ´ Ãp¨,1qθ
ub
Pm
´

Ãp¨,´1qτ̃ ď 0. By construction (see the proof to Lemma E.1) γ̄1iÃp¨,´1q “ 0 and γ̄i ě 0, and
hence γ̄1ipλm ` Ãp¨,1qxq ď 0, which implies γ̄1iλm ď ´γ̄1iÃp¨,1qx, as desired.

Since γ̄1iλm is bounded above, it follows that either i) γ̄1iλm Ñ ´8, or ii) there ex-
ists a subsequence m1 such that γ̄1iλm Ñ µ1 P R. If i) holds, then it is clear from (60)
that γ1i,mỸm Ñp ´8, since the inner product of γi,m with the first term in (60) con-
verges in distribution to a normal distribution with mean 0 and finite variance by As-
sumption 9 and Slutsky’s lemma, and the second term converges in probability to ´8.
Since η̂nm Ñp 8, it follows that P

´

η̂nm “ γ1i,mỸm

¯

Ñ 0, so γi,m is optimal with vanish-
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ing probability. Now, suppose ii) holds and consider the sequence m1. By an analogous
argument for γj,m, we can show that either ii.a) γ1j,m1

Ỹm Ñp ´8 or ii.b) there exists a
further subsequence m2 such that γ̄1j,m2

λm2 Ñ µ2 P R. If ii.a) holds, then it is immedi-

ate that for any ζ ą 0, P
´!

η̂nm2
“ γ1i,m2

Ỹm2

)

^

!

κij,m2pγi,m2 ´ γj,m2q
1Ỹm2 P r´ζ, ζs

)¯

Ñ 0,

since η̂nm2
Ñ 8, γ1j,m1

Ỹm Ñp ´8, and κij,m2 Ñ κ˚ij ą 0. Now, suppose ii.b) holds.
Since ?nm2pγ

˚
i ´ γ˚j q

1λm2 is non-stochastic, we can choose a subsequence m3 such that
?
nm3pγ

˚
i ´ γ

˚
j q
1λm3 Ñ µ3 P RY t˘8u. Then

pγi,m3 ´ γj,m3q
1Ỹm3 “pγi,m3 ´ γj,m3q

1?nm3Apβ̂nm3
´ βPm3

q
loooooooooooooooooooooomoooooooooooooooooooooon

“:Z1

`
?
nm3pγi,m3 ´ γ

˚
i q
1λm3

loooooooooooomoooooooooooon

“:Z2

´
?
nm3pγj,m3 ´ γ

˚
j q
1λm3

loooooooooooomoooooooooooon

“:Z3

`
?
nm3pγ

˚
i ´ γ

˚
j q
1λm3

looooooooooomooooooooooon

Z4

By Assumption 9 along with Slutsky’s lemma, Z1 Ñd pγ
˚
i ´ γ˚j qAξβ, for ξβ „ N p0, Σ˚q.

Next, note that we write Z2 “
?
npcipΣ̂nm3

q ´ cipΣ
˚qqv̄1iλm3 . Since ci is continuous, As-

sumption 9 along with the delta method imply that
?
npcipΣ̂nm3

q ´ cipΣ
˚qq Ñd G

1
iξΣ, where

Gi “ DvecpΣqcipΣ
˚q is the gradient of ci at Σ˚, and ξΣ „ N p0, VΣq. Since v̄1iλm Ñ µ1,

by Slutsky’s lemma, we have Z2 Ñd µ1G
1
iξΣ. By an analogous argument, we have that

Z3 Ñd µ2G
1
jξΣ. Finally, recall that Z4 Ñ µ3 by construction, and κij,m3 Ñ κ˚ij ą 0. Combin-

ing these results, along with the fact that these convergences hold jointly by Assumption 9,
we have that

κij,m3pγi,m3 ´ γj,m3q
1Ym3 Ñd κ

˚
ijpγ

˚
i ´ γ

˚
j q
1Aξβ ` κ

˚
ijpµ1Gi ´ µ2Gjq

1ξΣ ` κ
˚
ijµ3,

where pξ1β, ξ1Σq1 „ N p0, V ˚q. It is immediate that the limiting distribution in the previous
display, which we will denote by ξij, is normally distributed. We claim further that its
variance is strictly positive. Indeed, note that ξβ | ξΣ is normally distributed with variance
Σ˚ ´ V ˚βΣV

˚´1
Σ V ˚Σβ, which is positive definite by Assumption 10. Further, Assumption 8

implies that pγ˚i ´ γ˚j q
1A ‰ 0, and thus κ˚ijpγ˚i ´ γ˚j q

1Aξβ has positive variance conditional
on ξΣ. That the unconditional variance of ξij is positive then follows from the law of total
variance. Let σ2

ij denote the unconditional variance of ξij. We then see that for any ζ ą 0,
P pξij P r´ζ, ζsq ď Φpζ{σijq ´ Φp´ζ{σijq, since the normal distribution is single-peaked and
symmetric about its mean, so the maximal probability that a normal variable falls in an
interval of length 2ζ occurs when the interval is centered around the mean. Since ζpCq Ñ 0
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as C Ñ 8, we can choose C sufficiently large such Φpζ{σijq ´ Φp´ζ{σijq ă ω{p2mq. Hence,

lim sup
m3Ñ8

P
`

|κij,nm3
pγi,m3 ´ γj,m3q

1Ym3 | ă ζpCq
˘

ď ω{p2mq.

We have thus established that we can find a subsequence along which (62) or (63) holds
for a single pair pi, jq. However, since there are finitely many such pairs pi, jq, we can use
analogous arguments to further refine our subsequence and constant C such that this holds
for all pairs pi, jq.

Lemma F.6. Let η̂pY,Σq be as defined in the proof to Proposition E.1, and γ˚ an optimal
solution to the dual problem for η̂pY,Σq. Then, if vlopY,Σq is finite,

η̂ ´ vlo “
γ1˚Σγ˚

γ1˚Σγ˚ ´ γ
1Σγ˚

´

γ1˚Ỹ ´ γ
1Ỹ
¯

,

for some vertex γ P V pΣq such that γ1˚Σγ˚
γ1˚Σγ˚´γ1Σγ˚

ą 0.

Proof. We show in the proof to Lemma F.11 that

vlo “ min
tγPV pΣq : bγ,γ˚ă0u

´aγ,γ˚pỸ q

bγ,γ˚
,

where

bγ,γ˚ “
γ1Σγ˚
γ1˚Σγ˚

´ 1

aγ,γ˚pY q “ γ1pI ´
Σγ1˚
γ1˚Σγ˚

γ1˚qY.

Noting that η̂ “ γ1˚Y , the result then follows from applying the expressions above and
cancelling like terms.

F.3 Proofs and auxiliary lemmas for uniform local asymptotic power

results

Proof of Proposition E.3

Proof. Let γ̄1, ..., γ̄J be as defined in Lemma E.1. By Lemma F.16, there exists a value
C˚ P R such that for any Σ P S and any j such that γ̄1jA ‰ 0,

Φ

˜

η̂
a

γjpΣq1AΣA1γjpΣq

¸

ą 1´ α
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only if η̂ ą ´C˚. We suppose throughout the proof that ´
¯
C ď ´C˚.

Towards contraction, suppose that the proposition is false. Then there exists a sequence
of distributions Pm P Pε and an increasing sequence of sample sizes nm such that

lim inf
nÑ8

ˇ

ˇ

ˇ

ˇ

EPm
„

ψC˚,αpβ̂nm , A, d, θ
ub
Pm `

1
?
nm

x,
1

nm
Σ̂nmq



´ ρ˚pPmq

ˇ

ˇ

ˇ

ˇ

ě ω (64)

for some ω ą 0. We showed in the proof to Proposition E.1 that ψC˚,α is invariant to scale,
so this is equivalent to

lim inf
nÑ8

ˇ

ˇ

ˇ
EPm

”

ψC˚,αp
?
nmβ̂nm , A,

?
nmd,

?
nθubPm ` x, Σ̂nmq

ı

´ ρ˚pPmq
ˇ

ˇ

ˇ
ě ω. (65)

Define
Ym “

?
nm

´

Aβ̂nm ´ d´ Ãp¨,´1qpθ
ub
Pm ` xq

¯

and X :“ Ãp¨,´1q. Then

ψC˚,αp
?
nmβ̂nm , A,

?
nmd,

?
nθubPm ` x, Σ̂nmq “ ψC˚,αpYm, X,AΣ̂nmA

1
q.

For notational convenience, define τm :“ τPm ; define δm, δ˚˚m and Σm analogously. Let
Ỹm :“ Ym´Ãp¨,´1qΓp´1,¨q

?
nmpτPm´δPm,post`δ

˚˚
Pm,post

q. By Lemma 16 in ARP, ψC˚,αpYm, X,AΣ̂nmA
1q “

ψC˚,αpỸm, X,AΣ̂nmA
1q. Additionally, recall from the proof of Lemma C.7 that θubP “ l1pτP `

δP,post ´ δ
˚˚
P,postq. From this, we see that

Ỹm “
?
nm

´

Aβ̂nm ´ d´ Ãp¨,1qθ
ub
Pm ´ Ãp¨,´1qΓp´1,¨qpτPm ´ δPm,post ` δ

˚˚
Pm,postq

¯

´ Ãp¨,1qx

“
?
nm

´

Aβ̂nm ´ d´ Ãp¨,1ql
1
pτPm ` δPm,post ´ δ

˚˚
Pm,postq ´ Ãp¨,´1qΓp´1,¨qpτPm ´ δPm,post ` δ

˚˚
Pm,postq

¯

´ Ãp¨,1qx

“
?
nm

˜

Aβ̂nm ´ d´ A

˜

0

I

¸

pτPm ` δPm,post ´ δ
˚˚
Pm,postq

¸

´ Ãp¨,1qx,

where the last line follows from Lemma F.5. Additionally, note that by construction,

δPm,pre “ δ˚˚Pm,pre. Thus, δPm ´ δ
˚˚
Pm
“

˜

0

I

¸

pδPm,post ´ δ
˚˚
Pm,post

q. It follows that

Ỹm “
?
nmA

˜

β̂nm ´ δPm ´

˜

0

τPm

¸¸

`
?
nm

`

Aδ˚˚Pm ´ d
˘

´ Ãp¨,1qx. (66)
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Now, since Pm P Pε, by definition there exists an index Bm such that

ApBm,¨qδ
˚˚
Pm ´ dBm “ 0

Ap´Bm,¨qδ
˚˚
Pm ´ d´Bm ă ε,

and ABm,post has rank |Bm|. Since there are finitely many possible subindices of the rows
of A, we can choose a subsequence m1 such that Bm1 ” B for some index B such that
AB,post has rank |B|. Additionally, since S is compact, we can choose a further subsequence
m2 along which ΣPm2

Ñ Σ˚ for some Σ˚ P S. To avoid notational clutter, we will assume
that these convergences hold for the original sequence pm,nmq. Additionally, without loss of
generality, we will assume that B corresponds with the first |B| rows of A. It follows that

?
nm

`

Aδ˚˚Pm ´ d
˘

´ Ãp¨,1qx “

˜

´ÃpB,1qx
?
nm

`

Ap´B,¨qδ
˚˚
Pm
´ d´B

˘

´ Ãp´B,1qx

¸

ď

˜

´ÃpB,1qx

´
?
nmε´ Ãp´B,1qx

¸

,

from which it is apparent that

?
nm

`

Aδ˚˚Pm ´ d
˘

´ Ãp¨,1qxÑ

˜

´ÃpB,1qx

´8

¸

“: µ̄

as mÑ 8. Now, equation (66) along with Assumptions 5 and 7 and the continous mapping
theorem imply that

pỸm, Σ̂mq Ñd pξ ` µ̄,Σ
˚
q,

for ξ „ N p0, AΣ˚A1q.
Now, as in the proof to Proposition E.1, note that the (unmodified) conditional test

rejects iff ppY,Σq ą 1´ α for

ppY,Σq :“ P
`

ζ ă η̂pY,Σq | ζ P rvlopY,Σq, vuppY,Σqs, ζ „ N
`

0, σ2
ηpY,Σqq

˘˘

ą 1´ α.

It follows that the modified conditional test rejects iff p̃pY,Σq :“ ppY,Σq ¨1 rη̂pY,Σq ě ´
¯
Cs ą

1´ α. Thus, (65) implies that

lim inf
nÑ8

ˇ

ˇ

ˇ
PPm

´

p̃pỸm, Σ̂mq ą 1´ α
¯

´ ρ˚pPmq
ˇ

ˇ

ˇ
ě ω.

Additionally, Proposition 4.2 implies that for all m, ρ˚pPmq “ Φpc˚x ´ z1´αq, where c˚ “
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´γ̄1BÃpB,1q{σB, for σB “
b

γ̄1BApB,¨qΣA
1
pB,¨qγ̄B and γ̄B the unique vector such that γ̄1BÃpB,´1q “

0, γ̄B ě 0, ||γ̄B|| “ 1. Thus,

lim inf
nÑ8

ˇ

ˇ

ˇ
PPm

´

p̃pỸm, Σ̂mq ą 1´ αq
¯

´ Φpc˚x´ z1´αq

ˇ

ˇ

ˇ
ě ω. (67)

However, Lemma F.14 gives that p̃pY,Σq is continuous at pξ ` µ̄,Σ˚q for almost every
ξ „ N p0, AΣ˚A1q, and so from the continuous mapping theorem,

p̃pỸ, Σ̂mq Ñd p̃pξ ` µ̄,Σ
˚
q.

Additionally, Lemma F.15 gives that the distribution of p̃pξ ` µ̄,Σ˚q is continuous at 1´ α,
and thus

PPm
´

p̃pỸm, Σ̂mq ą 1´ α
¯

Ñ P pp̃pξ ` µ̄,Σ˚q ą 1´ αq .

Lemma F.12 implies that with probability 1,

ppξ ` µ̄,Σ˚q “ Φ

˜

γjpΣ
˚q1pξ ` µ̄q

a

γjpΣ˚q1AΣ˚A1γjpΣ˚q

¸

,

where γjpΣ˚q “ cjpΣqγ̄j for γ̄j the unique element of tγ̄1, ..., γ̄Ju such that γ̄j,´B “ 0. Ad-
ditionally, Lemma F.9 gives that with probability 1, η̂pξ ` µ̄,Σ˚q “ γjpΣ

˚q1pξ ` µ̄q. Since

´
¯
C ď ´C˚, Φ

˜

η̂
a

γjpΣ˚q1AΣ˚A1γjpΣ˚q

¸

ą 1 ´ α only if η̂ ą ´C̄, from which we see

that P pp̃pξ ` µ̄,Σ˚q ą 1´ αq “ P pppξ ` µ̄,Σ˚q ą 1´ αq . It follows from the expression for
ppξ ` µ̄,Σ˚q in the previous display that with probability 1, ppξ ` µ̄,Σ˚q ą 1´ α iff

γjpΣ
˚q1ξ

a

γjpΣ˚q1AΣ˚A1γjpΣ˚q
ą z1´α ´

γjpΣ
˚q1µ̄

a

γjpΣ˚q1AΣ˚A1γjpΣ˚q
.

The term on the left-hand side has the standard normal distribution, and thus

P pppξ ` µ̄,Σ˚q ą 1´ αq “ Φ

˜

γjpΣ
˚q1µ̄

a

γjpΣ˚q1AΣ˚A1γjpΣ˚q
´ z1´α

¸

.

Next, note that by definition γjpΣ˚q “ cjpΣ
˚qγ̄j, where by construction γ̄j,´B “ 0. Fur-

ther, from Lemma F.7, γ̄j,B is equal to the vector γ̄B defined above (i.e. the unique vector
satisfying the unique vector such that γ̄1BÃpB,´1q “ 0, γ̄B ě 0, ||γ̄B|| “ 1). It is then immediate
from the previous display and the fact that µ̄B “ ´ÃpB,1qx that

P pppξ ` µ̄,Σ˚q ą 1´ αq “ Φ pc˚x´ z1´αq .
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But this implies that

lim inf
nÑ8

ˇ

ˇ

ˇ
PPm

´

p̃pỸm, Σ̂mq ą 1´ α
¯

´ Φpc˚x´ z1´αq

ˇ

ˇ

ˇ
“ 0,

which contradicts (67).

Lemma F.7. Suppose Assumption 4 holds. Let B “ Bpδ˚˚q be the index of the binding
moments. Let γ̄1, ..., γ̄J be as defined in Lemma E.1. Then γ̄j,´B “ 0 for exactly one j P
t1, ..., Ju. Additionally, γ̄1jA ‰ 0, and γ̄j,B is the unique vector in the set tγB : γ1BÃpB,´1q “

0, γB ě 0, ||γB|| “ 1u.

Proof. We first show that there can be at most one γ̄j such that γ̄j,´B “ 0. Recall from
the proof to Lemma E.1 that for all j, γ̄1jÃp¨,´1q “ 0, γ̄j ě 0 and ||γ̄j|| “ 1. Thus, if
γ̄j,´B “ 0, we have γ̄1j,BÃpB,´1q “ 0. However, from Lemma C.7, the set tγ̄B : γ̄1ÃpB,´1q “

0u “ tcγ˚B | c P Ru for some non-zero vector γ˚B ě 0. Thus, there is a single vector in the
set tγB : γ1BÃpB,´1q “ 0, γB ě 0, ||γB|| “ 1u. In particular, its lone element is c˚γ˚B, for
c˚ “ 1{||γ˚B||. Hence, if there is such a γ̄j, it has c˚γ˚B in the positions corresponding with B
and zeros otherwise.

It thus remains to show that the vector with c˚γ˚B in the positions corresponding with B
and zeros otherwise is in the set tγ̄1, ..., γ̄Ju. Denote this vector γ˚. Note that by construction,
γ˚1Ãp¨,´1q “ 0. Thus, for any Σ positive definite, pγ˚1σ̃q´1γ˚ P F pΣq “ tγ : γ1Ãp¨,´1q “

0, γ1σ̃ “ 1u. Moreover, pγ˚1σ̃q´1γ˚ must be the unique vector in F pΣq with γ´B “ 0, since
as discussed above, tγ̄B : γ̄1ÃpB,´1q “ 0u “ tcγ˚B | c P Ru and so there is a unique vector
with γ1BÃp¨,´1q “ 0, γ ě 0, and γ1σ̃ “ 1. Let ν be the vector with -1 in the positions
corresponding with ´B and zeros otherwise. Then ν 1pγ˚1σ̃q´1γ˚ “ 0, whereas ν 1γ ă 0 for
any other γ P F pΣq, since every γ P F pΣq satisfies γ ě 0 and γ´B ‰ 0. Thus, pγ˚1σ̃q´1γ˚ is
a minimal face of F pΣq, and hence a vertex (see Schrijver (1986), Section 8.5). By Lemma
E.1, F pΣq “ tc1pΣqγ̄1, ..., cJpΣqγ̄Ju where cJ ą 0. It follows that pγ˚1σ̃q´1γ˚ “ cjpΣqγ̄j for
some j, so γ˚ is a constant multiple of γ̄j. However, since by construction γ˚ and γ̄j are both
positive and have a norm of 1, they must be equal, which gives the first result.

Next, note that we showed in the proof to Lemma C.7 that γ˚1B ÃpB,¨q “ e11. Since ÃpB,¨q “

ApB,¨q

˜

0

I

¸

Γ´1 and Γ´1 is full rank, it follows that γ˚1BApB,¨q ‰ 0. Since γ̄j,B “ c˚γ˚B and

γj,´B “ 0, we have that γ1jA “ c˚γ˚1BApB,¨q ‰ 0, which gives the second result.

Lemma F.8. Let µ̄ and Σ˚ be as defined in the proof to Proposition E.3. Let V̂ pY,Σq “
arg maxγPV pΣq γ

1Y . By Lemma F.7, there is a unique index j such that γ̄j,´B “ 0. Then for
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almost every ξ „ N p0, AΣ˚A1q, there is a neighborhood of pξ ` µ̄,Σ˚q such that V̂ pY,Σq “
cjpΣqγ̄j for almost every ξ „ N p0, AΣ˚A1q.

Proof. Without loss of generality, suppose that γ̄1,´B “ 0. Lemma E.1 implies that

η̂pY,Σq :“ max
γPV pΣq

γ1Y “ maxtc1pΣqγ̄
1
1Y, ..., cJpΣqγ̄

1
1Y u,

where the functions cjpΣq are continuous. Each of the elements of the max are continuous
functions of pY,Σq in a neighborhood of pξ` µ̄,Σ˚q by an argument analogous to that in the
proof to Lemma F.2 (replacing µ˚ with µ̄). Note, however, that γ̄11pµ̄`ξq “ γ̄11,BpξB`ÃpB,1qxq,

which is finite with probability 1. On the other hand, for j ą 1, γ̄1jpξ ` µ̄q “ ´8, since
γ̄j ě 0 and has at least one strictly positive element in the index ´B, and µ´B “ ´8. Since
cjpΣ

˚q ą 0 for all j by Lemma F.1, it follows that c1pΣ
˚qγ̄11pξ ` µ̄q ą cjpΣ

˚qγ̄1jpξ ` µ̄q for all
j ą 2. Since the functions on both sides of the inequality are continuous at pξ ` µ̄,Σ˚q, this
implies that c1pΣqγ̄

1
1Y ą cjpΣqγ̄

1
jY in a neighborhood of pξ ` µ̄,Σ˚q, which gives the desired

result.

Lemma F.9. Let µ̄ and Σ˚ be as defined in the proof to Proposition E.3. Let η̂pY,Σq “
maxγPV pΣq γ

1Y . Then for almost every ξ „ N p0, AΣ˚A1q, ηpY,Σq is continuous at pξ`µ̄,Σ˚q.
Further, there is a neighborhood of pξ ` µ̄,Σ˚q such that η̂pY,Σq “ cjpΣqγ̄

1
jY , where j is the

unique index such that γ̄j,´B “ 0 (which exists by Lemma F.7).

Proof. Follows immediately from the proof to Lemma F.8.

Lemma F.10. Let µ̄ and Σ˚ be as defined in the proof to Proposition E.3. Then for al-
most every ξ „ N p0, AΣ˚A1q, σ2

ηpY,Σq is continuous at pξ ` µ̄,Σ˚q. Further, there is a
neighborhood of pξ ` µ̄,Σ˚q such that σηpY,Σq “ cjpΣq

2γ̄1jAΣA1γ̄j ą 0.

Proof. By Lemma F.7, there is a unique index j such that γ̄j,´B “ 0, and this γ̄j satisfies
γ̄1jA ‰ 0. Lemma F.8 implies that V̂ pY,Σq “ cjpΣqγ̄j in a neighborhood of pξ ` µ̄,Σ˚q.
Thus, in that neighborhood, σ̂2

ηpY,Σq “ cjpΣq
2γ̄1jAΣA1γ̄j, which is clearly continuous in Σ.

Additionally, cjpΣ˚q ą 0 by Lemma F.1, and Σ˚ is positive definite, so σ̂2
ηpξ ` µ̄,Σ˚q “

cjpΣ
˚q2γ̄1jAΣ˚A1γ̄j ą 0. Since σ̂2

η is continuous at pξ ` µ̄,Σ˚q, it is also positive in a neigh-
borhood of pξ ` µ̄,Σ˚q.

Lemma F.11. Let µ̄ and Σ˚ be as defined in the proof to Proposition E.3. Then for almost
every ξ „ N p0, AΣ˚A1q, vlopξ` µ̄,Σ˚q “ ´8, vuppξ` µ̄,Σ˚q “ 8, and the functions vlo and
vup are continuous at pξ ` µ̄,Σ˚q.
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Proof. By Lemma F.7, there is a unique index j such that γ̄j,´B “ 0, and this γ̄j satisfies
γ̄1jA ‰ 0. Without loss of generality, assume this holds for j “ 1. Lemmas F.8 and F.10 then
imply that V̂ pY,Σq “ c1pΣqγ̄1 and σ̂2

ηpY,Σq ą 0 in a neighborhood of pξ ` µ̄,Σ˚q.
The proof of the continuity of vlo and vup is then similar to that in Lemma F.2. Let

γ˚pΣq “ c1pΣqγ̄1. For ease of notation, we will make the dependence of γ˚ on Σ implicit where
it is clear below. Since in a neighborhood of pξ`µ̄,Σ˚q, σ̂2

ηpY,Σq ą 0 and V̂ pY,Σq “ tγ˚pΣqu,
in that neighborhood vlopY,Σq is the minimum of the set

C “ tc : max
γPV pΣq

γ1
ˆ

Sγ˚pY,Σq `
Σγ˚
γ˚Σγ˚

c

˙

u,

for
Sγ˚pY,Σq “

ˆ

I ´
Σγ˚γ

1
˚

γ1˚Σγ˚

˙

Y.

Rearranging terms, we see that

C “ tc : 0 “ max
γPV pΣq

aγ,γ˚,Y,Σ ` bγ,γ˚,Σcu,

where aγ,γ˚,Y,Σ :“ γ1Sγ˚pY q and bγ,γ˚,Σ :“
γ1Σγ˚
γ1˚Σγ˚

´ 1. Note that aγ˚,γ˚,Y “ 0 “ bγ˚,γ˚ , so

0 ď maxγPV pΣq aγ,γ˚,Y ` bγ,γ˚c for all c. Moreover, for c “ γ1˚Y , the max is attained at γ˚ by
construction. Hence, the set C is non-empty.

Intuitively, if we plot aγ,γ˚,Y,Σ ` bγ,γ˚,Σ as a function of c, then each γ P V pΣq defines
a line, and the set C represents the values of c for which 0 is the upper envelope of this
set. It follows that the lower bound of C is the maximal x-intercept of the lines of the form
aγ,γ˚,Y,Σ ` bγ,γ˚,Σc with bγ,γ˚,Σ ă 0. Hence,

vlopY,Σq “ max
tγPV pΣqztγ˚u : bγ,γ˚,Σă0u

´âγ,γ˚,Y,Σ

b̂γ,γ˚,Σ
.

Now, let γ˚˚ “ γ˚pΣ
˚q. Observe that for any γ P V pΣ˚qzγ˚˚,

γ1
ˆ

I ´
Σ˚γ˚˚γ

1
˚˚

γ1˚˚Σ
˚γ˚˚

˙

pξ ` µ̄q “ γ1pξ ` µ̄q ´
γ1Σ˚γ˚˚
γ1˚˚Σ

˚γ˚˚
γ1˚˚pξ ` µ̄q.

Since γ´B ď 0 and has at least one strictly positive element, γ1pξ` µ̄q “ ´8 with probability
1. On the other hand, γ˚˚,B “ 0, and so γ1˚˚pξ ` µ̄q is finite with probability one. It follows
that aγ,γ˚˚,ξ`µ̄,Σ˚ “ ´8 with probability 1. Hence, vlopξ ` µ̄,Σ˚q “ ´8.

Next, recall that by Lemma E.1, V pΣq :“ tγ1pΣq, ..., γJpΣqu, where γjpΣq :“ cjpΣqγ̄j

and cjpΣq is continuous. Additionally, we showed in the proof to Lemma F.8 that for all
j, cjpΣqγ̄1jY is continuous at pξ ` µ̄,Σ˚q. It is then immediate from the definitions of the
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functions aγ,γ˚,Y,Σ and bγ,γ˚,Σ that for all j, aγjpΣq,γ˚pΣq,Y,Σ and bγjpΣq,γ˚pΣq,Σ are continuous in
pY,Σq as well. Without loss of generality, suppose that for 2 ď k ď k1, bγkpΣ˚q,γ˚pΣ˚q,Σ˚ ă 0;
for k1 ă k ď k2, bγkpΣ˚q,γ˚pΣ˚q,Σ˚ “ 0; and for k ą k2, bγkpΣ˚q,γ˚pΣ˚q,Σ˚ ą 0. From the
continuity of bγjpΣq,γ˚pΣq,Σ, it is clear that in a neighborhood of pξ` µ˚,Σ˚q, bγkpΣq,γ˚pΣq,Σ ą 0

for all 2 ď k ď k1 and bγkpΣq,γ˚pΣq,Σ ă 0 for all k ą k2. Hence, in this neighborhood,

vlopY,Σq “ max

"

max
γkpΣq : 2ďkďk1

´aγkpΣq,γ˚pΣq,Y,Σ
bγkpΣq,γ˚pΣq,Σ

, max
γPV 0pΣq

´aγ,γ˚pΣq,Y,Σ
bγ,γ˚pΣq,Σ

*

, (68)

where
V 0
pΣq :“ tγkpΣq : k1 ă k ď k2, bγkpΣq,γ˚pΣq,Σ ă 0u

and we define the max of an empty set to be ´8. It is clear from the continuity of the
functions a and b that the inner max on the left side of (68) is continuous and converges
to ´8. To show that vlo is continuous at pξ ` µ̄,Σ˚q, it thus suffices to show that for any
sequence pY,Σq Ñ pξ ` µ̄,Σ˚q, the max on the right hand side of (68) converges to ´8.
To do this, note that by construction bγkpΣ˚q,γ˚pΣ˚q,Σ˚ “ 0 for k P pk1, k2s, and so along any
sequence pY,Σq Ñ pξ` µ̄,Σ˚q, bγkpΣq,γ˚pΣq,Σ Ñ 0 since b is continuous in pY,Σq. Additionally,
since a is continuous, along such a sequence, aγkpΣq,γ˚pΣq,Y,Σ Ñ aγkpΣ˚q,γ˚pΣ˚q,ξ`µ̄,Σ “ ´8. For
values of pY,Σq where bγkpΣq,γ˚pΣq,Σ ą 0, it follows that ´aγkpΣq,γ˚pΣq,Y,Σ{bγkpΣq,γ˚pΣq,Σ becomes
arbitrarily negative, whereas for values of pY,Σq where bγkpΣq,γ˚pΣq,Σ ě 0, γk is not included
in V 0. It is then immediate that the max on the right hand side of (68) converges to ´8,
which suffices to establish the continuity of vlo at pξ ` µ̄,Σ˚q. The continuity of vup can be
shown analogously.

Lemma F.12. Let µ̄ and Σ˚ be as defined in the proof to Proposition E.3. Define ppY,Σq as
in Lemma F.3. Then for almost every ξ „ N p0, AΣ˚A1q, ppY,Σq is continuous at pξ`µ̄,Σ˚q,

and ppξ ` µ̄,Σ˚q “ Φ

˜

γjpΣ
˚q1pξ ` µ̄q

a

γjpΣ˚q1AΣ˚A1γjpΣ˚q

¸

, where j is the unique index such that

γ̄j,B “ 0 (which exists by Lemma F.7).

Proof. Lemmas F.9 to F.11 imply that for almost every ξ, η̂pY,Σq, σ2
ηpY,Σq, vlopY,Σq and

vuppY,Σq are continuous at pξ`µ̄,Σ˚q, and when evaluated at pξ`µ̄,Σ˚q, η̂ “ cjpΣ
˚qγ̄1jpξ`µ̄q,

σ̂2
η “ cjpΣ

˚q2γ̄1jAΣA1γ̄j ą 0, vlo “ ´8, and vup “ 8. Thus, σ̂η ą 0 and vlo ă vup in a
neighborhood of pξ ` µ̄,Σ˚q. When σ̂2

η ą 0 and vlo ă vup,

ppY,Σq “
Φpη̂{σ̂ηq ´ Φpvlo{σ̂ηq

Φpvup{σ̂ηq ´ Φpvlo{σ̂ηq
,
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which is clearly continuous in η̂, vlo, vup, and σ̂η, including when vlo “ ´8 and vup “ 8.
The continuity of ppY,Σq thus follows from the continuity of η̂, vlo, vup, and σ̂η.

Additionally, when evaluated at pY,Σq “ pξ ` µ̄,Σ˚q, we have

ppY,Σq “

Φ

˜

γjpΣ
˚q1pξ ` µ̄q

a

γjpΣ˚q1AΣ˚A1γjpΣ˚q

¸

´ Φp´8q

Φp8q ´ Φp´8q
“ Φ

˜

γjpΣ
˚q1pξ ` µ̄q

a

γjpΣ˚q1AΣ˚A1γjpΣ˚q

¸

.

Lemma F.13. Let µ̄ and Σ˚ be as defined in the proof to Proposition E.3. For any C̄ P R,
the function 1 rη̂pY,Σq ě ´

¯
Cs is continuous at pξ`µ̄,Σ˚q for almost every ξ „ N p0, AΣ˚A1q.

Proof. By Lemma F.9, for almost every ξ, the function η̂pY,Σq is continuous at pξ ` µ̄,Σ˚q.
It thus suffices to show that for almost every ξ, η̂pξ ` µ̄,Σ˚q ‰ ´C̄. Lemma F.9 gives
that η̂pξ ` µ̄,Σ˚q “ cjpΣ

˚qγ̄1jpξ ` µ̄q where γ̄j is the unique element of tγ̄1, ..., γ̄Ju such that
γ̄j,´B “ 0. Thus, η̂pξ ` µ̄,Σ˚q “ ´

¯
C only if cjpΣ˚qγ̄1jξ “ ´¯

C ´ cjpΣ
˚qγ̄1jµ̄, where the right-

hand side of the previous equation is finite since µ̄B is finite and γ̄j,´B “ 0. Observe further
that cjpΣ˚qγ̄1jξ is normally distributed with variance cjpΣ˚q2γ̄1jAΣ˚A1γ̄j ą 0. Since cjpΣ˚qγ̄1jξ
is continuously distributed, it follows that cjpΣ˚qγ̄1jξ “ ´

¯
C ´ cjpΣ

˚qγ̄1jµ̄ with probability
zero, which suffices for the result.

Lemma F.14. Let µ̄ and Σ˚ be as defined in the proof to Proposition E.3. Let the function
ppY,Σq be as defined in Lemma F.12. For any C̄ P R, the function p̃pY,Σq :“ ppY,Σq ¨

1 rη̂pY,Σq ě ´
¯
Cs is continuous at pξ ` µ̄,Σ˚q for almost every ξ „ N p0, AΣ˚A1q.

Proof. Follows immediately from Lemmas F.12 and F.13 and the fact that the product of
continuous functions is continuous.

Lemma F.15. Let µ̄ and Σ˚ be as defined in the proof to Proposition E.3 and p̃pY,Σq as
defined in Lemma F.14. For ξ „ N p0, AΣ˚A1q, p̃pξ ` µ̄,Σ˚q “ 1´ α with probability 0.

Proof. Note that p̃pY,Σq :“ ppY,Σq1rη̂pY,Σq ě ´
¯
Cs can equal 1 ´ α only if 1rη̂pY,Σq ě

´
¯
Cs “ 1 and ppY,Σq “ 1´α. It thus suffices to show that ppξ`µ̄,Σ˚q “ 1´α with probability

zero. From Lemma F.12, for almost every ξ, ppξ ` µ̄,Σ˚q “ Φ

˜

γjpΣ
˚q1pξ ` µ̄q

a

γjpΣ˚q1AΣ˚A1γjpΣ˚q

¸

,

where γjpΣ˚q :“ cjpΣ
˚qγ̄j and γ̄j is the unique element of tγ̄1, ..., γ̄Ju such that γ̄j,´B “ 0.

Thus, ppξ ` µ̄,Σ˚q “ 1 ´ α iff γjpΣ
˚q1ξ “ z1´α

a

γjpΣ˚q1AΣ˚A1γjpΣ˚q ´ γjpΣ
˚q1µ̄. However,

we showed in the proof to Lemma F.13 that γjpΣ˚q1ξ is continuously distributed, and thus
this occurs with probability 0.
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Lemma F.16. Let γ̄1, ..., γ̄J be as defined in Lemma E.1, and γjpΣq :“ cjpΣqγ̄j. There exists
a value C˚ P R such that for any Σ P S and any j such that γ̄1jA ‰ 0,

Φ

˜

η̂
a

γjpΣq1AΣA1γjpΣq

¸

ą 1´ α

only if η̂ ą C˚.

Proof. Observe that

Φ

˜

η̂
a

γjpΣq1AΣA1γjpΣq

¸

ą 1´ α

iff

η̂ ą z1´α

b

γjpΣq1AΣA1γjpΣq.

If z1´α ě 0, then the lower bound in the previous display is weakly greater than zero.
On the other hand if z1´α ă 0, then the lower bound is weakly greater than z1´α times the
maximum possible value of

a

γjpΣq1AΣA1γjpΣq. Note, however, that
a

γjpΣq1AΣA1γjpΣq “
b

cjpΣq2γ̄1jAΣA1γ̄j by Lemma E.1. By Lemma F.1, cjpΣq ď c̄. Additionally, since the set
tγ̄1, ..., γ̄Ju is finite, maxj ||γ̄

1
jA||

2 is finite. It then follows from Lemma F.1 that γ̄1jAΣA1γ̄j ď

λ̄maxj ||γ̄
1
jA||

2 ă 8, and so we obtain a finite upper bound on
a

γjpΣq1AΣA1γjpΣq, which
suffices for the result.

Proof of Proposition E.4

Proof. We first claim that the function mpβq “ Aβ is a maximal invariant of the group
G. Since by definition Av “ 0 for any v P AK, it is immediate that mpβq “ mpgvβq

for any gv P G. To show that m is a maximal invariant, consider β1 and β2 such that
mpβ1q “ mpβ2q. Then Apβ1 ´ β2q “ 0 and hence pβ1 ´ β2q P A

K. From this we see that
β1 “ β2 ` pβ1 ´ β2q “ gpβ1´β2qpβ2q, and thus mpβq is a maximal invariant. Note further that
Aβ1 “ Aβ2 iff Aβ1 ` h “ Aβ2 ` h for any constant vector h, and so the same argument
applies to show that mnpβq “ Aβ ` hn is maximal for any hn. It follows from Theorem 1
in Lehmann (1986, p. 285) that Cn can be written as a function of pmnpβq, Σ̂q only, so that
Cnp
?
nβ̂n, Σ̂nq “ C̃npmnp

?
nβ̂nq, Σ̂nq. From Lemma C.7, there exists a vector τ̃ such that

ApB,¨qβP˚ ´ dB ´ ÃpB,1qθ
ub
P˚ ´ ÃpB,´1qτ̃ “ 0 (69)

Ap´B,¨qβP˚ ´ d´B ´ Ãp´B,1qθ
ub
P˚ ´ Ãp´B,1qτ̃ “ ´ε ă 0. (70)
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We set the constant hn “ ´
?
nrd ´ Ãp¨,1qθ

ub
P˚ ´ Ãp¨,´1qτ̃ s, so that C̃ is a function of Yn :“

?
nrAβ̂n ´ d´ Ãp¨,1qθ

ub ´ Ãp¨,´1qτ̃ s and Σ̂n.
Observe that

Yn “
?
nApβ̂ ´ βP˚q ´

?
nrAβP˚ ´ d´ Ãp¨,´1qτ̃ s.

It follows immediately from (69) and (70) that
?
nrAβP˚ ´ d´ Ãp¨,´1qτ̃ s Ñ µ̄, where µ̄B “ 0

and µ̄´B “ ´8. Since by assumption
?
npβ̂n´βP˚q Ñd N p0, Σ˚q under P ˚, the continuous

mapping theorem along with Slutsky’s lemma imply that Yn
P˚
ÝÑd ξ`µ̄ for ξ „ N p0, AΣ˚A1q.

Similarly, suppose βPn “ βP˚ `
1?
n
pβ̃ ´ βP˚q for some fixed β̃. Suppose further that

?
npβ̂n ´ βPnq

Pn
ÝÑd N p0, Σ˚q. Observe that

Yn “
?
nApβ̂ ´ βPnq ` Apβ̃ ´ βP˚q ´

?
nrAβP˚ ´ d´ Ãp¨,´1qτ̃ s.

Thus, Yn
Pn
Ñd ξ ` Apβ̃ ´ βP˚q ` µ̄.

Now, as in Lemma C.12, let B0pθ̄q :“ tβ : Dτ s.t. l1τ “ θ̄, Aβ ´ d ´ A

˜

0

τ

¸

ď 0u

be the set of values β consistent with θ “ θ̄, and BB0 pθ̄q “ tβ : Dτ s.t. l1τ “ θ̄, ApB,¨qβ ´

dB ´ ApB,¨q

˜

0

τ

¸

ď 0u be the analogous set using only the moments B. Suppose that β̃ P

BB0 pθub`xq. We claim that for n sufficiently large, βn :“ βP˚`
1?
n
pβ̃´βP˚q P B0pθ

ub` 1?
n
xq.

It follows from the definition of BB0 pθub` xq and the construction of the matrix Ã that there
exists τ̆ such that ApB,¨qβ̃ ´ dB ´ ÃpB,1qpθubP˚ ` xq ´ ÃpB,´1qτ̆ ď 0. This, combined with (69),
implies that

ApB,¨qβn ´ dB ´ ÃpB,1qpθ
ub
P˚ `

1
?
n
xq ´ ÃpB,´1qpp1´

1
?
n
qτ̃ `

1
?
n
τ̆q ď 0.

However, from (70), it follows that

Ap´B,¨qβn ´ d´B ´ Ãp´B,1qpθ
ub
P˚ `

1
?
n
xq ´ Ãp´B,1qpp1´

1
?
n
qτ̃ `

1
?
n
τ̆q “

p1´
1
?
n
qp´εq `

1
?
n

´

Ap´B,¨qβ̃ ´ dB ´ Ãp´B,1qpθ
ub
P˚ ` xq ´ Ãp´B,1qτ̆

¯

,

which is negative for n sufficiently large since ´ε ă 0. The previous two displays imply that
for n sufficiently large, βn P B0pθ

ub
P˚ `

1?
n
xq, as we desired to show. Hence, for n sufficiently

large, there exists δn P ∆ and τn such that βn “ δn `

˜

0

τn

¸

and l1τn “ θub ` 1?
n
x.

Now, let ϕnpYn, Σ̂nq “ 1rθubP˚`
1?
n
x P C̃npYn, Σ̂nqs. It follows from the previous paragraph

along with the assumptions of the proposition that for any sequence Pn such that
?
npβ̂n ´
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βPnq
Pn
ÝÑd N p0, Σ˚q, Σ̂n

Pn
ÝÑp Σ˚, and βPn “ βP˚ `

1?
n
pβ̃ ´ βP˚q for β̃ P BB0 pθubP˚ ` xq, we

have that

lim sup
nÑ8

EPn
”

ϕnpYn, Σ̂nq

ı

ď α.

It then follows from Theorem 1 in Müller (2011) that

lim sup
nÑ8

EP˚
”

ϕnpYn, Σ̂nq

ı

ď ρ̄,

for ρ̄ the power of the most powerful test between

H0 : β̃ P BB0 pθub ` xq vs. H1 : β̃ “ βP˚

given a single observation Y „ N
´

µ̄` Apβ̃ ´ βP˚q, AΣ˚A1
¯

.35 Since µ´B “ ´8, Y´B “
´8 with probability 1 under both the null and alternative, so it suffices to consider tests ofH0

vs H1 given an observation YB „ N
´

µ̄B ` ApB,¨qpβ̃ ´ βP˚q, ApB,¨qΣ
˚A1

pB,¨q

¯

. Recalling that
µ̄B “ 0 by construction, we see that ρ̄ is the power of the most powerful test between H0 : µ P

M0 :“ tApB,¨qpβ̃´βP˚q : β̃ P BB0 pθubP˚ `xqu and H1 : µ “ 0 given Y „ N
´

µ, ApB,¨qΣ
˚A1

pB,¨q

¯

.
Now, it follows from the proof to Lemma C.12 that

BB0 pθubP˚ ` xq “ tβ : γ̄1B

´

ApB,¨qβ ´ dB ´ ÃpB,1qpθ
ub
P˚ ` xq

¯

ď 0u,

for γ̄B the unique vector such that γ̄1BÃpB,´1q “ 0, γ̄B ě 0, ||γ̄B|| “ 1. This, combined with
(69) and the fact that γ̄1ÃpB,´1q “ 0, implies that BB0 pθubP˚`xq “ tβ : γ̄1B

`

ApB,¨qpβ ´ βP˚q
˘

ď

γ̄1BÃpB,1qxu. It is then immediate that M0 Ď tv : γ̄1Bv ď γ̄1BÃpB,1qxu. Additionally, since δP˚
satisfies Assumption 4, ApB,¨q has rank B, and thus its image is R|B|. This implies inclusion
in the opposite direction, and hence M0 “ tv : γ̄1Bv ď γ̄1BÃpB,1qxu. It then follows from
Lemma C.11 that ρ̄ “ Φ

´

´γ̄1BÃpB,1qx{σ
˚
B ´ z1´α

¯

, for σ˚B “

b

γ̄1BApB,¨qΣ
˚A1

pB,¨qγ̄B. This
accords with the formula for ρ˚pP ˚, xq given in Proposition 4.2, which completes the proof.

G Additional Simulation Results

This section contains additional simulation results that complement the simulations pre-
sented in the main text. Section G.1 describes the computation of the optimal bound
for expected excess length. Section G.2 contains additional results from the normal data-

35See also Section 3.2 of Müller (2011) on applying Theorem 1 to invariant tests.
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generating process considered in the main text. Section G.3 presents results from a non-
normal data-generating process in which the covariance matrix is estimated from the data.

G.1 Optimal bounds on excess length

We now discuss the computation of optimal bounds on the excess length of confidence in-
tervals that satisfy the uniform coverage requirement (10). In Section 5, we benchmark the
performance of our proposed procedures in Monte Carlo simulations relative to these bounds.

The following result restates Theorem 3.2 of Armstrong and Kolesar (2018) in the nota-
tion of our paper, which provides a formula for the optimal expected length of a confidence
set that satisfies the uniform coverage requirement.

Lemma G.1. Suppose that ∆ is convex. Let Iα denote the set of confidence sets that satisfy
the coverage requirement (10). Then, for any δA P ∆ and τA P RT̄ ,

inf
CPIα

EpδA,τA,Σnq rλpCqs “ p1´ αqE rω̄pz1´α ´ Zq ´
¯
ωpz1´α ´ Zq |Z ă z1´αs ,

where Z „ N p0, 1q, z1´α is the 1´ α quantile of Z, and

ω̄pbq :“ suptl1τ | τ P RT̄ , Dδ P ∆ s.t. }δ `Mpostτ ´ βA}
2
Σn ď b2

u

¯
ωpbq :“ inftl1τ | τ P RT̄ , Dδ P ∆ s.t. }δ `Mpostτ ´ βA}

2
Σn ď b2

u,

for βA :“ δA `MpostτA, and ||x||Σ “ x1Σ´1x.

The proof of this result follows from observing that the confidence set that optimally
directs power against pδA, τAq inverts Neyman-Pearson tests of H0 : δ P ∆, θ “ θ̄ against
HA : pδ, τq “ pδA, τAq for each value θ̄. The formulas above are then obtained by integrating
one minus the power function of these tests over θ̄. By the same argument, the optimal excess
length for confidence sets that control size is the integral of one minus the power function
over all points θ̄ outside of the identified set. Additionally, for any value θ̄ P Sp∆, βAq, the
null and alternative hypotheses are observationally equivalent, and so the most powerful
test trivially has size α. It follows that the lowest achievable expected excess length is
p1 ´ αq ¨ LIDp∆, δA,preq shorter than the lowest achievable expected length, where as in
Section 3, LID denotes the length of the identified set.

Corollary G.1. Under the conditions of Lemma G.1,

inf
CPIα

EpδA,τA,Σnq rELpC; δA, τAqs “ inf
CPIα

EpδA,τA,Σnq rλpCqs ´ p1´ αqLIDp∆, δA,preq.
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G.2 Additional Results for Normal Simulations

In the main text, we report efficiency in terms of excess length for the parameter θ “ τ1

for ∆SDpMq, ∆SDPBpMq, ∆SDRMpM̄q and ∆RMpM̄q. In this section, we provide additional
simulation results.

Alternative choices of M̄ for ∆SDRMpM̄q and ∆RMpM̄q. The main text reports effi-
ciency in terms of excess length over ∆SDRMpM̄q and ∆RMpM̄q for M̄ “ 1. We now report
additional results for M̄ “ 1, 2, 3. The results are qualitatively similarly, suggesting that
the choice of M̄ does not appear to have a large effect on the performance of our proposed
procedures.

Figure I1: ∆SDRMpM̄q and ∆RMpM̄q: Median efficiency ratios for proposed procedures when
θ “ τ1 as M̄ varies.

Note: This figure shows the median efficiency ratio for our proposed confidence sets for θ “ τ1 over
∆SDRM pM̄q, ∆RM pM̄q and M̄ “ 1, 2, 3. The efficiency ratio for a procedure is defined as the excess length
bound divided by the procedure’s expected excess length. The results for M̄ “ 1 are plotted in red, M̄ “ 2
are plotted in blue, and M̄ “ 3 are plotted in green. The results for the conditional-least favorable confidence
set (“LF Hybrid”) are plotted in the solid line with circles. The results for the conditional confidence set
are plotted in the dashed line with triangles. Results are averaged over 1000 simulations for each of the 12
papers surveyed, and the median across papers is reported here.

Alternative choice of target parameter. The main text reports efficiency in terms of
excess length for the parameter θ “ τ1. We now report additional results using the average
of post-period treatment effects, θ “ τ̄post, as the target parameter.

Figure I2 plots the efficiency results for θ “ τ̄post over ∆SDpMq and ∆SDPBpMq. As in
the main text, we conduct these simulations under the assumption of parallel trends and
zero treatment effects (i.e., β “ 0), reporting results as M{σ1 varies.
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Figure I2: Median efficiency ratios for ∆SDpMq and ∆SDPBpMq when θ “ τ̄post.

Note: This figure shows the median efficiency ratios for our proposed confidence sets for ∆SDpMq and
∆SDPBpMq when θ “ τ̄post. The efficiency ratio for a procedure is defined as the optimal bound divided
by the procedure’s expected excess length. The results for the FLCI are plotted in purple, the results for
the conditional-FLCI (“C-F Hybrid”) confidence interval in red, the results for the conditional-LF (“C-LF
Hybrid”) hybrid in blue and the results for the conditional confidence interval in green. Results are averaged
over 1000 simulations for each of the 12 papers surveyed, and the median across papers is reported here.

Figure I3 plots the efficiency results for θ “ τ̄post over ∆SDRMpM̄q and ∆RMpM̄q. As in
the main text, we conduct these simulations under the assumption of zero treatment effects
and a “pulse” pre-trend (i.e., β´1 “ δ´1 and βt “ 0 for all t ‰ ´1), reporting results for
M̄ “ 1 over δ´1{σ1 “ 0, 1, 2, 3.36

36We note that over ∆SDRM pM̄q the median efficiency ratio for our proposed confidence sets is larger than
one for M̄ “ 3. For M̄ “ 3, the length of the identified set for θ “ τ̄post can be quite large when there are
many post-treatment periods (e.g., as mentioned in the main text, 5 papers in the survey have T̄ ą 10), and
so this behavior occurs due to computational constraints on the grid size for the underlying test inversion.
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Figure I3: Median efficiency ratios for ∆SDRMpM̄q and ∆RMpM̄q when θ “ τ̄post.

Note: This figure shows the median efficiency ratios for our proposed confidence sets for ∆SDRM pM̄q and
∆RM pM̄q when θ “ τ̄post and M̄ “ 1. The efficiency ratio for a procedure is defined as the optimal bound
divided by the procedure’s expected excess length. The results for the conditional-least favorable (“C-LF”)
hybrid in blue and the results for the conditional confidence interval in green. Results are averaged over
1000 simulations for each of the 12 papers surveyed, and the median across papers is reported here.
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G.3 Non-normal simulation results with estimated covariance ma-

trix

In the main text, we presented simulations results where β̂ is normally distributed and its
covariance matrix is treated as known. In this section, we present Monte Carlo results using
a data-generating process in which β̂ is not normally distributed and the covariance matrix
is estimated from the data. Specifically, we consider simulations based on the empirical
distribution in Bailey and Goodman-Bacon (2015). We find that all of our procedures achieve
(approximate) size control, and our results on the relative power of the various procedures
are quite similar to those presented in the main text.

G.3.1 Simulation design

The simulations are calibrated using the empirical distribution of the data in Bailey and
Goodman-Bacon (2015).37 Let β̂, Σ̂ denote the original, estimated event-study coefficients
and variance-covariance matrix from the event-study regression in the paper. We simulate
data using a clustered bootstrap sampling scheme at the county level (i.e. the level of
clustering used by the authors in their event-study regression). For each bootstrap sample
b, we re-estimate the event-study coefficients β̂b and the variance-covariance matrix Σ̂b also
using the clustering scheme specified by the authors. We then re-center the bootstrapped
coefficient so that under our simulated data-generating process either parallel trends holds
(i.e., β̂centeredb “ β̂b´ β̂) or the “pulse” pre-trend holds (i.e., β̂centeredb “ β̂b´ β̂`δ´1 ˚e´1 where
e´1 is the (

¯
T ` T̄ )-dimensional vector with one in t “ ´1 entry and zeroes everywhere else).

We construct our proposed confidence sets for bootstrap draw b using the pair pβ̂centeredb , Σ̂bq.
As in the main text, we focus on the performance of our proposed confidence sets for

∆SDpMq, ∆SDPBpMq under parallel trends and ∆SDRMpM̄q, ∆RMpM̄q under the “pulse”
pre-trend. The parameter of interest in these simulations is the causal effect in the first
post-period (θ “ τ1). For ∆SDpMq and ∆SDPBpMq, we report the performance of the FLCI,
conditional confidence set, conditional-FLCI hybrid confidence set, and conditional-least
favorable confidence set. For ∆SDRMpM̄q and ∆RMpM̄q, we report the performance of the
conditional confidence set and the conditional-least favorable confidence set. All results are
averaged over 1000 bootstrap samples.

37Since implementing the bootstrap in practice is logistically challenging, we do so for one paper rather
than the full 12 papers in the survey. We chose the first paper alphabetically to minimize concerns about
cherry-picking.
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G.3.2 Size control simulations

Table 2 reports the maximum rejection rate of each procedure over a grid of parameter values
θ within the identified set Spβ,∆q for ∆ “ ∆SDpMq and ∆ “ ∆SDPBpMq under parallel
trends (i.e., β “ 0). We report results forM{σ1 “ 0, 1, 2, 3, 4, 5. The table shows that all our
procedures approximately control size, with null rejection rates never substantially exceeding
the nominal rate of 0.05.

∆ M{σ1 Conditional FLCI C-F Hybrid C-LF Hybrid
∆SDpMq

0 0.073 0.078 0.083 0.069
1 0.046 0.061 0.046 0.044
2 0.038 0.072 0.038 0.037
3 0.040 0.072 0.040 0.038
4 0.049 0.072 0.051 0.045
5 0.059 0.072 0.061 0.051

∆SDPBpMq
0 0.079 0.078 0.084 0.074
1 0.052 0.047 0.048 0.048
2 0.046 0.055 0.043 0.042
3 0.051 0.058 0.045 0.046
4 0.055 0.058 0.051 0.051
5 0.059 0.058 0.057 0.057

Table 2: Maximum null rejection probability over the identified set Spβ,∆q for ∆ “ ∆SDpMq
and ∆ “ ∆SDPBpMq under parallel trends (i.e., β “ 0) using the empirical distribution from
Bailey and Goodman-Bacon (2015).

Table 3 reports the maximum rejection rate of the conditional test and the conditional-
least favorable test over a grid of parameter values θ within the identified set Spβ,∆q for
∆ “ ∆SDRMpM̄q and ∆ “ ∆RMpM̄q under the “pulse” pre-trend (i.e., β´1 “ δ´1 and βt “ 0

for all t ‰ ´1). We report results for M̄ “ 1 and δ´1{σ1 “ 1, 2, 3. The table shows that all
our procedures control size, and are conservative for these choices of ∆.

G.3.3 Comparison with normal simulations

We next compare results from the non-normal simulations with estimated covariance dis-
cussed above to the normal model simulations the main text, in which β̂ is normal and Σ is
treated as known.

Figures I4-I5 shows the rejection probabilities at different values of the parameter θ using
both simulation methods for ∆SDpMq, ∆SDPBpMq at M{σ1 “ 0, 5 respectively. The results
are quite similar for all values ofM{σ1 considered, and we thus omit the intermediate values.
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∆ δ´1{σ1 Conditional C-LF Hybrid
∆SDRMpM̄q

1 0.009 0.008
2 0.037 0.035
3 0.058 0.054

∆RMpM̄q
1 0.005 0.005
2 0.017 0.016
3 0.024 0.023

Table 3: Maximum null rejection probability over the identified set Spβ,∆q for ∆ “

∆SDRMpM̄q and ∆ “ ∆RMpM̄q under the “pulse” pre-trend (i.e., β´1 “ δ´1 and βt “ 0
for all t ‰ ´1) and M̄ “ 1 using the empirical distribution from Bailey and Goodman-Bacon
(2015). We report results for δ´1{σ1 “ 1, 2, 3.

The estimated average rejection rates of each procedure are quite similar in the non-normal
simulations and the normal simulations across each choice of ∆. As a result, the relative
rankings of the procedures in terms of power are the same in the non-normal simulations
as in the normal simulations discussed in the main text. Similarly, Figures I6-I7 shows the
rejection probabilities at different values of the parameter θ using both simulation methods
for ∆SDRMpM̄q, ∆RMpM̄q at δ´1{σ1 “ 1, 3 respectively and M̄ “ 1.
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Figure I4: Comparison of rejection probabilities using bootstrap and normal simulations.
Results are shown for θ “ τ1, and each choice of ∆ “ ∆SDpMq,∆SDPBpMq, and M{σ1 “ 0.
The average rejection rate for the non-normal simulations are in red and the average rejection
rate for the normal simulations are in blue; the dashed black lines indicate the identified set
bounds. Results are averaged over 1000 simulations.
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Figure I5: Comparison of rejection probabilities using bootstrap and normal simulations.
Results are shown for θ “ τ1, and each choice of ∆ “ ∆SDpMq,∆SDPBpMq, and M{σ1 “ 5.
The average rejection rate for the non-normal simulations are in red and the average rejection
rate for the normal simulations are in blue; the dashed black lines indicate the identified set
bounds. Results are averaged over 1000 simulations.
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Figure I6: Comparison of rejection probabilities using bootstrap and normal simulations for
∆SDRMpM̄q and ∆RMpM̄q. Results are shown for θ “ τ1, M̄ “ 1 and δ´1{σ1 “ 1. The
average rejection rate for the non-normal simulations are in red and the average rejection
rate for the normal simulations are in blue; the dashed black lines indicate the identified set
bounds. Results are averaged over 1000 simulations.
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Figure I7: Comparison of rejection probabilities using bootstrap and normal simulations for
∆SDRMpM̄q and ∆RMpM̄q. Results are shown for θ “ τ1, M̄ “ 1 and δ´1{σ1 “ 3. The
average rejection rate for the non-normal simulations are in red and the average rejection
rate for the normal simulations are in blue; the dashed black lines indicate the identified set
bounds. Results are averaged over 1000 simulations.
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