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Abstract

This paper proposes tools for robust inference for difference-in-differences and event-
study designs. Instead of requiring that the parallel trends assumption holds exactly,
we impose that pre-treatment violations of parallel trends (“pre-trends”) are informative
about the possible post-treatment violations of parallel trends. Such restrictions allow
us to formalize the intuition behind the common practice of testing for pre-existing
trends while avoiding issues related to pre-testing. The causal effect of interest is
partially identified under such restrictions. We introduce two approaches that guarantee
uniformly valid (“honest”) inference under the imposed restrictions, and we derive novel
results showing that they have good power properties in our context. We recommend
that researchers conduct sensitivity analyses to show what conclusions can be drawn
under various restrictions on the possible differences in trends.
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1 Introduction

When using difference-in-differences and related methods, applied researchers are often un-
sure whether the needed parallel trends assumption holds in practice. It is therefore common
to assess the plausibility of the parallel trends assumption by testing for pre-treatment dif-
ferences in trends (“pre-trends”). There are concerns, however, that such tests may have low
power (Freyaldenhoven, Hansen and Shapiro, 2019; Roth, 2019; Kahn-Lang and Lang, 2020;
Bilinski and Hatfield, 2020), and relying on them further introduces statistical issues from
pre-testing (Roth, 2019). This paper introduces an alternative approach to causal inference
in settings where parallel trends may be violated. Our approach formalizes the intuition
motivating tests of pre-trends while avoiding the limitations described above.

We consider a setting in which the researcher estimates a vector of “event-study” coefhi-
cients § = (A]’m, Az’mt) e RT+T_ where Bpre and Bpost respectively correspond with estimates
for T pre-treatment periods and 7' post-treatment periods. The parameter 3 = E [,5’] can
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be decomposed as

where 7 is a causal parameter of interest (assumed to be 0 in the pre-treatment period) and §
is a bias from a difference in trends. For instance, in the canonical (non-staggered) difference-
in-differences framework, 7 is the vector of period-specific average treatment effects on the
treated (ATT) for some policy of interest, and § is the difference in trends of untreated
potential outcomes between the treated and comparison groups. The usual parallel trends
assumption is that d,.ss = 0, which gives point identification of 7,,s. Researchers frequently
test the plausibility of this assumption by testing whether d,,. = 0 (a “pre-trends” test).

Instead of imposing that parallel trends holds exactly, we place restrictions on the possible
values of the post-treatment difference in trends d,,s given the (identified) value of the pre-
trend 0. Such restrictions formalize the intuition motivating pre-trends tests, namely that
pre-trends are informative about counterfactual post-treatment differences in trends. More
formally, we impose that € A for some researcher-specified set A and show that the causal
parameter T,,s is partially identified under such restrictions.

We show that a variety of commonly expressed intuitions about possible violations of
parallel trends can be captured via different choices of the set A. For example, applied
researchers often have the intuition that any differences in trends evolve smoothly over time
(e.g. owing to long-run secular trends), which can be formalized by restricting how quickly

the slope of the differential trend can change over time. Likewise, our framework allows



researchers to formalize the intuition that the magnitude of the violation of parallel trends
in the post-treatment period cannot be too much larger than the worst-case violation over
the pre-treatment periods. We adopt a flexible framework that allows researchers to capture
these intuitions, as well as a variety of other restrictions that are implied by context-specific
knowledge about the possible confounds.

We then introduce methods that provide uniformly valid (“honest”) inference for the
treatment effect of interest under the restriction that § € A. Our approach to inference can
be applied whenever A can be written as the finite union of polyhedra, which incorporates all
of the restrictions described above and many others. Specifically, we introduce two methods
for inference with different attractive features depending on the exact form of A considered.

We first consider inference based on optimal fixed length confidence intervals (FLCIs)
(Donoho, 1994), which have desirable finite-sample guarantees for particular As of interest.
Results from Armstrong and Kolesar (2018a,b) imply that FLCIs have near-optimal expected
length among honest procedures when the class A is convex and centrosymmetric, as is the
case for our baseline smoothness class. FLCIs are thus an attractive choice for particular
choices of A. Unfortunately, we show that FLCIs have unattractive properties for other
leading choices of A: in many cases, they will be inconsistent in the strong sense that power
against fixed points outside the identified set need not converge to one asymptotically.

Motivated by this finding, we next introduce a more general inference approach that
can accommodate a larger class of restrictions A. We show that a wide variety of relevant
restrictions A can be written as the finite union of polyhedra, in which case testing hy-
potheses about treatment effects can be cast as a moment inequality problem with nuisance
parameters that enter the moments linearly. This formulation allows us to leverage the large
econometrics literature on testing for moment inequalities (see Canay and Shaikh (2017);
Molinari (2020) for recent reviews). We consider an implementation of this approach based
on the conditional test proposed in Andrews, Roth and Pakes (2019, henceforth ARP),
which has several desirable features in our setting. First, it is computationally tractable
even when the dimension of the nuisance parameters is large, as occurs whenever there are
many post-treatment periods. Second, we show that the conditional test has optimal local
asymptotic power for parameter configurations satisfying a linear independence constraint
qualification (LICQ) condition. When A bounds the post-treatment bias by the maximal
pre-treatment violation of parallel trends, for example, this condition is satisfied when the
pre-treatment maximum is unique. Our optimal local asymptotic power result is novel, and
relies on structure in our context not present in the more general setting considered in ARP.

We recommend empirical researchers use our methods to conduct sensitivity analyses in

which they report confidence sets under varying restrictions on the possible differences in



trends. For example, one class of restrictions we consider restricts the post-treatment viola-
tion of parallel trends to be no more than M times larger in magnitude than the maximum
pre-treatment violation. It is then natural for the researcher to report confidence sets for
different values of M, which highlights how the results change under different assumptions
about how bad the violation of parallel trends could be relative to the pre-trend. Performing
such sensitivity analyses makes clear what must be assumed about the possible differences
in trends in order to draw specific causal conclusions. We provide an R package, HonestDiD,
that implements our recommended methods.! We illustrate our recommended approach with

an application to two recently published papers.

Related literature: Our approach is most closely related to Manski and Pepper (2018),
who consider partial identification of treatment effects under direct bounds on the extent to
which parallel trends is violated in the post-treatment period. These restrictions are nested
as a special case within our framework. We consider a larger class of possible restrictions,
however, which allows us to formalize a variety of intuitions expressed in applied work,
including the notion that pre-trends are informative about post-treatment differences in
trends. Additionally, we develop methods for conducting inference on the causal effects
of treatment under these assumptions, whereas Manski and Pepper (2018) only consider
identification.

Several other recent papers consider various relaxations of the parallel trends assump-
tion. Keele, Small, Hsu and Fogarty (2019) develop techniques for testing the sensitivity
of difference-in-differences designs to violations of the parallel trends assumption, but they
do not incorporate information from the observed pre-trends in their sensitivity analysis.
Empirical researchers commonly adjust for the extrapolation of a linear trend from the pre-
treatment periods when there are concerns about violations of the parallel trends assumption,
which is valid if the difference in trends is exactly linear (e.g., Dobkin, Finkelstein, Kluender
and Notowidigdo, 2018; Goodman-Bacon, 2018, 2021; Bhuller, Havnes, Leuven and Mogstad,
2013). Our methods nest this approach as a special case, but allow for valid inference under
less restrictive assumptions about the class of possible differences in trends. Freyaldenhoven
et al. (2019) propose a method that allows for violations of the parallel trends assumption but
requires an additional covariate that is affected by the same confounding factors as the out-
come but not by the treatment of interest. Ye, Keele, Hasegawa and Small (2020) consider
partial identification of treatment effects when there exist two control groups whose out-
comes have a bracketing relationship with the outcome of the treated group. Leavitt (2020)

proposes an empirical Bayes approach calibrated to pre-treatment differences in trends, and
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Bilinski and Hatfield (2020) and Dette and Schumann (2020) propose approaches based on
pre-tests for the magnitude of the pre-treatment violations of parallel trends.

Our methods address several concerns related to established empirical practice in difference-
in-differences and event-study designs. First, common tests for pre-trends may be under-
powered against meaningful violations of parallel trends, potentially leading to severe un-
dercoverage of conventional confidential intervals (Freyaldenhoven et al., 2019; Roth, 2019;
Bilinski and Hatfield, 2020; Kahn-Lang and Lang, 2020). Second, statistical distortions from
pre-testing for pre-trends may further undermine the performance of conventional inference
procedures (Roth, 2019). Third, parametric approaches to controlling for pre-existing trends
may be sensitive to functional form assumptions (Wolfers, 2006; Lee and Solon, 2011). We
address these issues by providing tools for inference that do not rely on an exact parallel
trends assumption and that make clear the mapping between assumptions on the potential
differences in trends and the strength of one’s conclusions.

Our work complements a growing literature on the causal interpretation of event-study
coefficients in two-way fixed effects models in the presence of staggered treatment timing
or heterogeneous treatment effects (Borusyak and Jaravel, 2016; Athey and Imbens, 2018;
Goodman-Bacon, 2021; Callaway and Sant’Anna, 2020; de Chaisemartin and D’Haultfceuille,
2020; Sun and Abraham, 2020). Several alternative estimators have been proposed that
consistently estimate sensible causal estimands under a suitable parallel trends assumption.
Our methodology complements these approaches by providing tools to assess the sensitivity
of these methods to violations of the corresponding parallel trends assumption; see Remark
1 for additional details.

2 General set-up

We now introduce the assumptions, target parameter, and inferential goal considered in the
paper. In the main text, we consider a finite-sample normal model with known covariance
matrix, which arises as an asymptotic approximation to a variety of econometric settings of
interest. In the supplementary materials, we show how the finite-sample results presented in
this model translate to uniform asymptotic statements over a large class of data-generating

processes.

2.1 Finite sample normal model

Consider the model

ﬁn ~ N(ﬁa Zn)a (2>



where 3, € RT*T and %, = 1¥* for ¥* a known, positive-definite (' + T) x (' + T)
matrix. We refer to Bn as the estimated event-study coefficients, and partition Bn into vectors
corresponding with the pre-treatment and post-treatment periods, 3, = ( A;,pre, B{wost)’ ,
where Bn,pre e R and ﬂAmpost e RT. We adopt analogous notation to partition other vectors
that are the same length as Bn

The finite sample normal model (2) can be viewed as an asymptotic approximation,
since a variety of estimators for difference-in-differences and event study designs will yield
asymptotically normally-distributed event-study coefficients, y/n <Bn — 6) LN (0, X*), un-
der mild regularity conditions (see Remarks 1-2). This convergence in distribution suggests
the finite-sample approximation B, 2 N (B, 2,), where < denotes approximate equality
in distribution and X, = %E*. We derive results assuming this equality in distribution
holds exactly in finite samples. In the supplemental materials, we show that results in the
finite sample normal model translate to uniform asymptotic statements for a large class of
data-generating processes.

We assume the mean vector [ satisfies the following causal decomposition.

Assumption 1. The parameter vector 3 can be decomposed as

re d e .
B = p + P with Tpre = 0. (3)
7-post 5post
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The first term, 7, represents the dynamic causal effects of interest. We assume the treatment
has no causal effect prior to its implementation, so 7,,. = 0. The second term, ¢, represents
the difference in trends between the treated and comparison groups that would have occurred
absent treatment. The parallel trends assumption imposes that d,, = 0, and therefore

Bpost = Tpost under parallel trends.

Example: Difference-in-differences We observe an outcome Y}, for a sample of individ-
uals © = 1,..., N for three time periods, t = —1,0, 1. Individuals in the treated population
(D; = 1) receive a treatment between period ¢ = 0 and ¢ = 1. The observed outcome
equals Y;; = D;Y; (1) + (1 — D;)Y;+(0), where Y; (1) and Y;,(0) are the potential outcomes
for individual ¢ in period t associated with the treatment and control conditions. Assume
the treatment has no causal effect prior to implementation, meaning Y;,(1) = Y;.(0) for

t < 1. The causal estimand of interest is the average treatment effect on the treated (ATT),

2For the purposes of this example, we think of the observed sample as consisting of N; independent draws
from the treated (D; = 1) population and Ny independent draws from the control population (D; = 0) with
N = Ny + Ny, as in Abadie and Imbens (2006).



Tarr = E[Y;1(1) = Y;1(0) | D; = 1]. In this setting, researchers commonly estimate the “dy-

namic event study regression”

Yi=X+¢+ Y B x L[t = 5] x D; + . (4)

s#0

The estimated coefficient Bl is the “difference-in-differences” of sample means across treated
and untreated groups between period t = 0 and t = 1, 31 = (Vi1 —Y10)— (Yo1—Yop), where
Yd,t is the sample mean of Y}; for treatment group d in period t. The “pre-period” coefficient
ﬁ_l can likewise be written as B_l = (5717_1 — 57170) — (Yo_1 — Yoo).

Taking expectations and re-arranging, we see that

E [31] = 7arr + E[Yi1(0) = Yip(0) | D; = 1] = E[Y;.1(0) = Yip(0) | D; = 0],

>

~
Post-treatment differential trend =: 61

E| 31| = E[Yio1(0) = Yio(0)| Di = 1] = E[¥ia(0) = Yio(0) | Di = 0]

/

~
Pre-treatment differential trend =: §_1

The parameter § = E [B] thus satisfies the decomposition (3), where 7,5t = Tarr is the
ATT, d,0st = 01 is the difference in trends in untreated potential outcomes between ¢ = 0 and
t =1, and d,,e = 0_; is the analogous difference in trends for untreated potential outcomes
between t = —1 and ¢ = 0. Under suitable regularity conditions, B will also satisfy a central

limit theorem, so that (2) will hold approximately in large samples. A

Remark 1 (Staggered timing). As discussed above, several recent papers have noted that the
estimand of specification (4) does not have an intuitive causal interpretation when treatment
is staggered and there are heterogeneous treatment effects. However, Sun and Abraham
(2020), Callaway and Sant’Anna (2020), and de Chaisemartin and D’Haultfoeuille (2021)
propose alternative methods for forming “event-studies” with a sensible interpretation in
such settings. Since these estimators are asymptotically normally distributed, they fit into
our framework, where now 7,,5 corresponds with a weighted average of causal effects at each
lag since treatment, and ¢ corresponds with a weighted average of differences in untreated

potential outcomes.

Remark 2 (Other event-study estimators). Other examples of estimators that yield asymp-
totically normal event-study estimates (under suitable regularity conditions) include the
GMM procedure proposed by Freyaldenhoven et al. (2019), instrumental variables event-
studies (Hudson, Hull and Liebersohn, 2017), as well as a range of procedures that flexibly

control for differences in covariates between treated and comparison groups (e.g., Heckman,



Ichimura, Smith and Todd, 1998; Abadie, 2005; Sant’Anna and Zhao, 2020).

Remark 3 (Anticipatory effects). In some cases, there may be changes in behavior in
anticipation of the policy of interest, and therefore, 8, may reflect the causal anticipatory
effects of the policy (Malani and Reif, 2015). This violates Assumption 1, which assumes
pre-treatment coefficients do not reflect causal effects. A simple solution is available if one is
willing to assume that anticipatory effects only occur in a fixed window prior to the policy
change. Under such an assumption, the researcher may re-normalize the definition of the
“pre-treatment” period to be the period prior to when anticipatory effects can occur, in which

case [y is determined only based on untreated potential outcomes.

Remark 4 (Design-based Uncertainty). Rambachan and Roth (2020) shows that the normal
model (2) also arises from a design-based model that treats the finite population of observed
units as fixed and views the assignment of treatment as the source of randomness in the data.
This perspective may be preferred to the usual sampling-based approach to uncertainty in

settings where the super-population is not clear, such as when all 50 US states are observed
(Manski and Pepper, 2018; Abadie, Athey, Imbens and Wooldridge, 2020).

2.2 Target parameter and identification

The parameter of interest is a linear combination of the post-treatment causal effects, 6 :=
I'Tpost for some known T-vector [. For example, 6 equals the t-th period causal effect 7; when
the vector [ equals the t-th standard basis vector. Similarly, 6 equals the average causal
effect across all post-treatment periods when [ = (%, e %)/

We relax the parallel trends assumption by assuming that § lies in a set of possible
differences in trends A, which is specified by the researcher. This nests the usual parallel
trends assumption as a special case with A = {§ : 0,00 = 0}. Since . = E [Bpre] is
identified, the assumption that 6 = (0,,., ;) € A restricts the possible values of §,0s: given
the (identified) value of the pre-treatment difference in trends d,... It is natural to place
restrictions on the relationship between 0,,. and 0,,s, since researchers frequently test the
null hypothesis that d,,. = 0 as a way of assessing the plausibility of the assumption that
Spost = 0.

Under the assumption that 6 € A # {J : 0yt = 0}, the parameter 6 will typically be

set-identified. For a given value of (3, the identified set for § under the assumption § € A is

7_post

S(B,A) = {9 030 € A, Tpost e RT s.t. UTpost = 0,8 =0 + ( 0 )}, (5)



i.e. the set of values of A consistent with S under the restriction that 6 € A. When A is a

closed and convex set, the identified set has a simple characterization.

Lemma 2.1. If A is closed and convezx, then S(5,A) is an interval in R, S(5,A) =
[9lb(ﬁ’ A)J GUb(ﬂg A)]; where

elb(ﬁa A) = l,ﬁpost - <m§lX l/(sposta s.t. e A, 6pre = /BpT(i)? (6)
::bmaaj(rﬁpre ;A)
0 (B, A) =1 Bost — (main USpost, St 6 € A, 6o = 5m> . (7)

v
=:pmn (ﬁp're 1A)

Proof. Re-arranging terms in (5), the identified set can be equivalently written as S(5, A) =
{6 : 30 € A s.t. Opre = Bpres 0 = U'Bpost — U'Opost}. The result is then immediate. O

Example: Difference-in-differences (continued) Point identification of the ATT in
the difference-in-differences design is typically obtained by assuming that the counterfactual
post-treatment difference in trends 4, is exactly zero. Instead, we assume § = (0_1,9;) € A
for some set A. When A is closed and convex, the identified set for the ATT will be
[B1 — b™® By — b™™], where ™% = max;d; s.t (6_1,01) € A is the maximum possible bias

of given §; and b™™" is defined analogously. A

Additionally, it is immediate from the definition of the identified set in (5) that if A is
the finite union of sets, A = Uszl Ay, then its identified set is the union of the identified

sets for its subcomponents,
K
S(8,8) = | 88, Ap). (8)
k=1

This fact will be useful, since several As of interest in empirical practice can be written as

the finite union of convex sets, as we will see below.

2.3 Possible choices of A

The class of possible differences in trends A must be specified by the researcher, and the
choice of A will depend on the economic context. We highlight several possible choices of A
that may be reasonable in empirical applications and formalize intuitive arguments that are

commonly made by applied researchers regarding possible violations of parallel trends.



2.3.1 Smoothness restrictions

Researchers often worry about confounding factors that lead to different secular trends among
the treated and comparison groups. When the researcher expects the secular trends to evolve
smoothly over time, it is common to control for a linear group-specific time trend.® This
approach is valid if the difference in trends is linear, i.e. A = {§: 6; = v -t,v € R}, where
we adopt the convention that periods ¢ < 0 and ¢ > 0 respectively correspond with the
elements of d,,e and d,05t, and oy = 0.* There are often concerns, however, that the linear
specification is not exactly correct (Wolfers, 2006; Lee and Solon, 2011). A natural relaxation
is therefore to impose only that the differential trends evolve smoothly over time — say with
slope changing by no more than M between consecutive periods. This can be formalized by

requiring that § lie in the set
ASD(M) = {(5 : ’(5t+1 — 515) - ((St - 6t71)| < M, Vt} (9)

The parameter M > 0 governs the amount by which the slope of § can change between
consecutive periods, and thus bounds the discrete analog of the second derivative (we use
the abbreviation SD for “second differences” or “second derivative”).” In the special case
where M = 0, A°P(0) requires that the difference in trends be exactly linear.

It is worth highlighting that the common practice of testing for pre-trends is intuitively
based on the notion that differences in trends evolve smoothly over time. Indeed, a pre-
trends test would not be very informative about the bias in a difference-in-differences design
if the difference in trends could be close to zero in the pre-treatment period and then change
sharply around the time of treatment. The restriction that § € ASP (M) is thus one way of

formalizing this intuition.

Example: Difference-in-differences (continued) In the three-period difference-in-
differences model, assuming the differential trend is exactly linear is equivalent to assuming
A={5:0 =—0_1}. Assuming § € AP (M) requires only that the linear extrapolation be
approzimately correct, & € [—d_1 — M, —0_1 + M].

3Specifically, researchers often augment specification (4) with group-specific linear trends, an approach
Dobkin et al. (2018) refer to as a “parametric event-study.” An analogous approach is to estimate a linear
trend using only observations prior to treatment, and then subtract out the estimated linear trend from the
observations after treatment (Bhuller et al., 2013; Goodman-Bacon, 2018, 2021).

4Setting 6y = 0 corresponds with the common practice of normalizing 3y = 0, as in specification (4).

SRestrictions on the second derivative of the conditional expectation function or density have been used
in regression discontinuity settings (Kolesar and Rothe, 2018; Frandsen, 2016; Noack and Rothe, 2020).
Smoothness restrictions are also used to obtain partial identification in Kim, Kwon, Kwon and Lee (2018).

10



2.3.2 Bounding Relative Magnitudes

A second related approach bounds the worst-case post-treatment violation of parallel trends

in terms of the worst-case violation in the pre-treatment period. For instance, the restriction
ARM(M) = {6 : Yt =0, [601 — 6] < M - mag<|55+1 — s}
s<

bounds the maximum post-treatment violation of parallel trends (between consecutive pe-
riods) by M times the maximum pre-treatment violation of parallel trends. (We use the

abbreviation RM for “relative magnitudes”.) Likewise, the restriction
ASPEM(NIDY = {5 0 Yt = 0, |(8p41 — 0¢) — (6 — 6,-1)| < M - r£1<ag<\(53+1 —0s) — (05 — ds—1)|}

bounds the maximum deviation from a linear trend in the post-treatment period by M times
the equivalent maximum in the pre-treatment period. The set ASPEM (V) is thus similar to
ASP (M) introduced above, except it allows the magnitude of the possible non-linearity to

explicitly depend on the observed pre-trends.

Example: Difference-in-differences (continued) Assuming j € A (M) bounds the
magnitude of §; based on the magnitude of 0_y, i.e. APM(M) = {(6_1,6,)" : 01| < M|6_1]}.
The larger the magnitude of the observed pre-period violation in parallel trends, [§_1|, the

wider the range of possible post-period violations of parallel trends. A

2.3.3 Sign and monotonicity restrictions

Context-specific knowledge may sometimes also suggest sign or monotonicity restrictions on
the differential trend. For instance, if the policy of interest occurs at the same time as a
confounding policy change that we expect to have a positive effect on the outcome, we might
restrict the post-treatment bias to be positive, § € APB ;= {§ : 6, = 0 Vt > 0}. Likewise,
there may be secular pre-existing trends that we expect would have continued following
the treatment date. We may then wish to impose that the differential trend be increasing,
e Al :={§ : 6 = 6,1 Vt}, or monotone with unknown sign, § € AMo" .= ATy (—Al). Sign
and monotonicity restrictions may be combined with the previously discussed restrictions,

such as ASPPB(M) := ASP(M) n APB ASPL(M) = ASP(M) n Al and ARMI(M) =

6Monotone violations of parallel trends are often discussed in applied work. For example, Lovenheim and
Willen (2019) argue that violations of parallel trends cannot explain their results because “pre-[treatment]
trends are either zero or in the wrong direction (i.e., opposite to the direction of the treatment effect).”
Greenstone and Hanna (2014) estimate upward-sloping pre-existing trends and argue that “if the pre-trends
had continued” their estimates would be upward biased.

11
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2.3.4 Polyhedral restrictions

Although the restrictions described above will be sensible in many empirical contexts, re-
searchers will often have context-specific knowledge that motivates alternative restrictions.
To accommodate such cases, we consider the broad class of As that can be written as poly-

hedra (sets defined by linear inequalities), or the finite union of polyhedra.

Definition 1 (Polyhedral restriction). The class A is polyhedral if it takes the form A =
{0 1 Ad < d} for some known matrix A and vector d, where the matrix A has no all-zero

TOWS.

All of the examples described above can be written either as polyhedral restrictions or
finite unions of such restrictions. For instance, ASP(M) and ASPPB(M) can be written
directly as polyhedra.” Likewise, AFM (M) or ASPEM (N[ can be written as the finite union
of polyhedra, where each polyhedron corresponds with a different location for the maximum
pre-treatment violation.® The class of (finite unions of) polyhedra is quite broad, and allows

for a variety of other restrictions that may be relevant in empirical work.

Remark 5 (Bounded variation assumptions). Manski and Pepper (2018, henceforth MP)
consider identification of treatment effects under “bounded variation assumptions” which can
be expressed in the polyhedral form introduced in Definition 1. In the ongoing difference-in-
differences example, MP’s “bounded difference-in-differences variation” assumption directly
bounds the magnitude of |§;| when j3; is the coefficient from specification (4). MP also
consider “bounded time” and “bounded state” variation assumptions, which correspond with
bounds on the magnitudes of |u11 — 1| and |11 — poa|, where pgs ;== E[Y(0)|D = d,t = s].
These restrictions can be accommodated by augmenting the vector B to include the sam-
ple means corresponding with estimates of the differences in outcomes for the appropriate

treatment-group by time period cells.” H

In our ongoing three-period difference-in-differences example, AP (M) = {§ : ASP§ < dP} for ASP =
( _11 jl ) and d°P = (M, M)’. This generalizes naturally when there are multiple pre-periods and
multiple post-periods. - -

8For example, define the polyhedra AT (M) = {6 : V£ = 0, 6,41 — 0¢| < M (6541 —05)} and AFM = {5
Vt = 0,101 — 6] < =M (6541 — 05)}. Then ARM (M) =, _o (AFM (M) U AEM(NT)).

9 After augmenting the vector for the event-study coefficients, Equation (3) must be re-written to replace
(0, Tpost)” With C7pst, where €' is a matrix that accounts for the fact that elements of 7 enter both the
event-study coefficients and the augmented terms. Our proposed methods and results do not rely on the
structure that C' = (0,)" and thus easily accommodate this modification.

12



Remark 6 (Ashenfelter’s dip). Researchers studying labor market training and related
programs may be concerned about Ashenfelter’s dip (Ashenfelter, 1978), in which earnings
for the treated group trend downwards (relative to control) before treatment and upwards
afterwards. In this type of setting, researchers might naturally use a polyhedral A to impose
i) restrictions on the signs of the pre-treatment and post-treatment biases, as well as ii)

restrictions on the magnitude of the rebound effect relative to the pre-treatment shock.

2.4 Inferential Goal

Given a particular choice of A, we construct confidence sets C,, that are uniformly valid for

all parameter values 6 in the identified set,

6é&,T 968(12764_7_) (57 7271)( € ) (0% ( )

We subscript the probability operator by (4,7, %,) to make explicit that the distribution of
Bn (and hence C,,) depends on these parameters. In the supplemental materials, we show that
the coverage requirement (10) in the normal model translates to uniform asymptotic coverage
over a large class of data-generating processes. Confidence sets satisfying this criterion are
referred to as “honest” (Li, 1989).

We will primarily focus our attention on constructing confidence sets for the case where
A is a polyhedron. A valid confidence set for the case where A is the finite union of polyedra
can then be constructed by taking the union of the confidence sets for each of its components,

as formalized in the following lemma.

Lemma 2.2. Suppose that for each k = 1,..., K, the confidence set C, . satisfies (10) with
A = Ay. Then the confidence set C, = Ule Cni satisfies (10) with A = Uszl Ay,

In the next two sections, we introduce two approaches to obtain confidence sets satisfying
(10). The first approach, fixed length confidence intervals, provide particularly attractive
properties for specific forms of A, such as AP (M). The second approach, based on moment

inequalities, can accommodate a much wider range of restrictions.

3 Inference using Fixed Length Confidence Intervals

We first consider fixed length confidence intervals (FLCIs) based on affine estimators. FLCIs
deliver attractive finite-sample guarantees for certain choices of A, including our baseline

smoothness class AP (M), but may perform poorly for other types of restrictions.
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3.1 Constructing FLCIs

Following Donoho (1994) and Armstrong and Kolesar (2018a, 2020), we consider fixed
length confidence intervals based on an affine estimator for 6, denoted by Cqn(a,v,x) =

R7+T. We minimize the half-length of

<a + U'Bn> + x, where a and y are scalars and v €
the confidence interval, x, subject to the constraint that C, ,(a,v, x) satisfies the coverage
requirement (10).

To do so, note that a+v'B, ~ N (a + v/, v'S,v), and hence |a+v'B,—0| ~ [N (b, v'S,0) |,
where b = a + v/ — 0 is the affine estimator’s bias for . Observe further that 6 € C,(a, v, x)
if and only if |a +’ B — 0] < x. For fixed values a and v, the smallest value of x that satisfies

(10) is therefore the 1 — o quantile of the [N (b, v'S,v) | distribution, where b is the affine

estimator’s worst-case bias
! O /
a+v [0+ —U'Tpost
7—post

Let cv,(t) denote the 1 — o quantile of the folded normal distribution [N (¢, 1)].' For fixed

a and v, the smallest value of x satisfying the coverage requirement (10) is thus

b(a,v) ;=  sup : (11)

6€A, TpostERT

Xn(a,v;a) = 0y - cva(b(a,v) /o, 5), (12)

where 0, ,, := /v'S,v. The optimal (i.e., minimum-length) FLCI is constructed by choosing
the values of @ and v to minimize (12). When A is convex, this minimization can be solved
as a nested optimization problem, where both the inner and outer minimizations are convex
(Low, 1995; Armstrong and Kolesar, 2018a, 2020). We denote the 1 — a level, optimal FLCI
by CELCT .= (an + v{ﬁn> + Xn, where x,, := inf,, xa(a,v;) and a,, v, are the optimal

values in the minimization.

Example: ASP(M). Suppose § = 7. For ASP(M), the affine estimator used by the
optimal FLCI takes the form a+U’Bn = Bn,l —ZSZ_TH W <an - Bn,s—1>7 where the weights
w, sum to one (but may be negative). This estimator adjusts the event-study coefficient for
t = 1 by an estimate of the differential trend between ¢ = 0 and ¢ = 1 formed by taking
a weighted average of the differential trends in periods prior to treatment. The worst-case
bias will be smaller if more weight is placed on pre-treatment periods closer to the treatment
date, but it may reduce variance to place more weight on earlier pre-periods. The weights

wy are optimally chosen to balance this tradeoff. A

10Tf ¢ = o0, we define cv, = 0.
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3.2 Finite-sample near optimality

In particular cases of interest, such as when A = ASP (M), the FLCIs introduced above have
near-optimal expected length in the finite-sample normal model. The following result, which
is a consequence of results in Armstrong and Kolesar (2018a, 2020), bounds the ratio of the
expected length of the shortest possible confidence interval that controls size relative to the
length of the optimal FLCI.

Assumption 2. Assume i) A is conver and centrosymmetric (i.e. § € A implies —6 € A),
and ii) 04 € A is such that (0 —04) € A for all § € A.

Proposition 3.1. Suppose 64 and A satisfy Assumption 2.'" Let T,(A,3,) denote the class
of confidence sets that satisfy the coverage criterion (10) at the 1 — « level. Then, for any

74 € RT, ©* positive definite, and n > 0,

infccx,nEIoz(Ayzn) E(fSA:TAyEn) [A(Ca’7n)] > Zl,a(l - Oé) - Zaq)(ga> + (b(zlfa) - (b('ga)

= 9

2Xn Z1—a/2

where \(+) denotes the length (Lebesque measure) of a set and Zo, = z1_o — 21—a/2-

Part i) of Assumption 2 is satisfied for ASP(M) but not for our other ongoing examples.
For example, ASPPB (M) is convex but not centrosymmetric, and A®M (M) is neither convex
nor centrosymmetric. Part ii) of Assumption 2 is satisfied whenever parallel trends holds
in both the pre-treatment and post-treatment periods (§4 = 0) and whenever 04 is a linear
trend for the case of ASP(M).

FLCIs thus offer attractive guarantees for the case of ASP(M). When a = 0.05, the lower
bound in Proposition 3.1 evaluates to 0.72, so the expected length of the shortest possible
confidence set that satisfies the coverage requirement (10) is at most 28% shorter than the

length of the optimal FLCI when the conditions of the proposition hold.

3.3 (In)Consistency of FLCIs

The finite-sample guarantees discussed above do not apply for several types of restrictions
A of importance, including those that construct bounds using the maximum pre-treatment
violation or that incorporate sign and shape restrictions. We now show that the FLCIs can
perform poorly under such restrictions. We first provide two illustrative examples, and then

state a formal inconsistency result.

1'We use 64 for the null value of §, rather than dy, since we use the notation §; to refer to the component
of § corresponding with period t.
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Example: ASPPB(M) and ASPI(M). Suppose § = 71. The worst-case bias of an affine
estimator over ASPPB(M) or ASP! is the same as the worst-case bias for that estimator
over ASP(M).*? Since the construction of the optimal FLCI depends only on the worst-case
bias and variance of the affine estimator, it follows that the optimal FLCI constructed using
ASPPB(M) or ASPI(M) is the same as the one constructed using ASP(M). Therefore, the

optimal FLCI does not adapt to additional sign or monotonicity restrictions. A

Example: APM()M). Suppose 0 = 7. If A = ABM(M) and M > 0, then all affine
estimators for 7; have infinite worst-case bias, since § € A®M (M) can have |§;| arbitrarily

large if |§_1] is also sufficiently large. Thus, the only valid FLCI is the entire real line. A

We next provide a formal result on the (in)consistency of the FLCIs. We consider “small-
37 asymptotics wherein the sampling uncertainty grows small relative to the length of the
identified set, and provide necessary and sufficient conditions under which the FLCIs include
fixed points outside of the identified set with non-vanishing probability.® Recall from Lemma
2.1 that the identified set S(f,A) is an interval when A is convex, with length equal to
0 (B,A) — 0"(B,A) = b™%(Byre, A) — b™" (B0, A). Since the length of the identified set
only depends on A and (3, denote it by LID(Bpre, A). Our next result shows that Cg Lot
is consistent if and only if LID(fB,.,A) is its maximum possible value, provided that the

identified set is not the entire real line (in which case any procedure is trivially consistent).

Assumption 3 (Identified set maximal length and finite). Suppose 04 € A is such that
LID(6apre; A) = sups en,,. LID(Opre; A) < 00, where Apre = {Opre € RT : F0p0st 8.t (000,00 06) €

pre’ “post
A} is the set of possible values for Oppe.

Proposition 3.2. Suppose A is conver and a € (0,0.5]. Fiz 64 € A and 74 € RT, and
suppose S(6a + T4, A) # R. Then (64,A) satisfy Assumption 3 if and only if CELCT is
consistent, meaning that

lm Ps, ry 50 (07" € ci LCTY = 0 for all 0° ¢ S(0a + T4, A).

n—oo

is inconsistent in the strong sense that it includes

Thus, if Assumption 3 fails, then CEL¢!

fixed points outside of the identified set with non-vanishing probability. It follows that there

12Quppose the vector § maximizes the bias for an affine estimator (a,v) over ASP(M). The vector that
adds a constant slope to 8, say 6, = & + ¢ - (~T,...,TY, also lies in AP (M), and for c¢ sufficiently large, be
will lie in ASPPB (D). Moreover, the worse-case bias will be the same for § and 4, since if (a,v) has finite
worst-case bias it must subtract out a weighted average of the pre-treatment slopes.

13See, e.g., Kadane (1971) and Moreira and Ridder (2019) for other uses of small-3 asymptotics.
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will be some d4 € A such that the FLCI is inconsistent under 4 unless the identified set is

always the same length.'*

Remark 7. In the three-period difference-in-differences example, Assumption 3 holds ev-
erywhere for ASP(M) (since the identified set is always the same length, 2M), for values of
§ where the sign restrictions do not bind for ASPPB(M), and nowhere for AFMI(Af). The

restrictiveness of Assumption 3 thus depends greatly on A. l

Remark 8. Proposition 3.2 implies that FLCIs can potentially be inconsistent when A is
convex and centrosymmetric if § # 0. For example, if A = {§ € ASP(M) : |§;| < M}, then
the FLCI is inconsistent whenever d_; # 0, even though Proposition 3.1 implies that the
FLCI is near-optimal for 6 = 0. As discussed above, however, such inconsistency does not

arise for our baseline smoothness class AP (M).

Remark 9. In Appendix A.1, we further show that if Assumption 3 along with an additional
condition (Assumption 4 introduced below) hold, then the FLCI also has local asymptotic
power approaching the power envelope under the same asymptotics considered in Proposition
3.2. 1

The results in this section establish that when certain conditions on A are satisfied, the
FLCIs are consistent and have desirable finite-sample guarantees in terms of expected length.
These conditions hold for our baseline smoothness class AP (M), but fail for choices of A
that may be of interest in empirical applications such as those that construct bounds using a
pre-treatment maximum or incorporate sign and monotonicity restrictions. This motivates
us to next consider an alternative method for inference that can accommodate a larger range

of restrictions.

4 Inference using Moment Inequalities

In this section, we introduce a more general approach for inference that has good asymptotic
properties over a large class of possible restrictions A. We show that inference on the partially
identified parameter § = I'7,,s in this setting is equivalent to testing a system of moment
inequalities with a potentially large number of nuisance parameters that enter the moments
linearly. We consider an implementation based on the conditional approach developed in
ARP, which allows us to obtain computationally tractable confidence sets with desirable

power properties for many parameter configurations.

14We also show in Lemma C.26 in the Appendix that the conditions of Proposition 3.1 imply that As-
sumption 3 holds. Thus, the FLCIs obtain finite sample near-optimality in a subset of the cases where they
are consistent.
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4.1 Representation as a moment inequality problem with linear nui-
sance parameters
Consider testing the null hypothesis, Hy : §# = 0,6 € A when A = {§ : AJ < d}. We now

show that testing Hj is equivalent to testing a system of moment inequalities with linear

nuisance parameters.

The model (2) implies E(s 75, [Bn - T] = ¢, and hence 6 € Aifand only if E(5- 5, [ABn - AT]

d. Defining Y,, = AB, — d and Mot = [0, I]" to be the matrix such that 7 = Mo Tpost, it 18

immediate that the null hypothesis Hj is equivalent to the composite null
Hy : 3Tpost € RT s.t. 'Tpost = 0 and Er50) [Yn — AMpostTpost] < 0. (13)

In this equivalent form, 7,5 € R7 is a vector of nuisance parameters that must satisfy the
linear constraint 7,05 = 0.
By applying a change of basis, we can further re-write Hy as an equivalent composite null

hypothesis with an unconstrained nuisance parameter. Re-write the expression AMp,stTpost

{0 y
as A ( > , where A is the matrix that results from applying a suitable change of basis to
T

the columns of AM,,s, and 7 € RT-115 The null Hyj is then equivalent to
Ho:37 e RT st . E [an(é) - X%] <0, (14)

where Y(0) = Y, — A0 and X = A, _,. Since Y, (0) is normally distributed with covari-
ance matrix 3, = AYX, A’ under the finite-sample normal model (2), testing Hy: 0 = 0,5 € A

is equivalent to testing a system of moment inequalities with linear nuisance parameters.

Remark 10. Testing the hypothesis (14) is a special case of the problem studied in ARP,
which focuses on testing null hypotheses of the form Hy : 37 s.t. E[Y(0) — X7 | X] < 0. Our
setting is a special case of this framework in which: i) the variable X takes the degenerate
distribution X = X, and ii) Y () = Y(6) is linear in . The first feature plays an important
role in developing our consistency and local asymptotic power results presented later in this
section: if i) fails and X is continuously distributed, then the tests proposed by ARP will
generally not be consistent, as they do not allow for the number of moments to grow with

n. The current proof of the optimal local asymptotic result also exploits the geometry of

15Let T be a square matrix with the vector I’ in the first row and remaining rows chosen so that I' has

0
full rank. Define A := AMpostF_l. Then AM,oeT = AFTpost =A L_1,9Tpost |. If T = 1, then 7 is
[ —

=T

0-dimensional and should be interpreted as 0.
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feature ii), although we conjecture that this could be relaxed to allow Y () to vary smoothly

inf. A

4.2 Constructing conditional confidence sets

A practical challenge to testing the hypothesis (14) in our setting is that the dimension of
the nuisance parameter 7 € RT-1 grows linearly with the number of post-periods T and
may be large in practice. For instance, in Section 6 we revisit an empirical paper in which
T = 23. Moreover, 5 of the 12 recent event-study papers reviewed in Roth (2019) have
T > 10. This renders many moment inequality methods, especially those which rely on test
inversion over a grid for the full parameter vector, practically infeasible. To tractably deal
with the nuisance parameter, we leverage the conditional approach of ARP, which directly
exploits the linear structure of the hypothesis (14) and delivers computationally tractable
and powerful tests even when the number of post-periods 7T is large.' We briefly sketch the
construction of the conditional testing approach in our testing problem, and refer the reader
to ARP for full details.

Suppose we wish to test (14) for some fixed §. The conditional testing approach considers

tests based on the profiled test statistic

7 :=minn s.t. Y, () — X7 < &, -7, (15)
n,T
where o, = diag(in). This linear program selects the value of the nuisance parameters

7 e RT-! that makes the maximum studentized moment the smallest. Duality results from
linear programming (e.g. Schrijver (1986), Section 7.4) imply that the value 7 obtained from

the primal program (15) equals the optimal value of the dual program,'”

i = max+'Y,(0) s.t. ¥YX = 0,76, = 1,7 = 0. (16)
¥

If a vector ~, is optimal in the dual problem above, then it is a vector of Lagrange multipliers

for the primal problem. We denote by V,, the set of optimal vertices of the dual program.'®

160Other moment inequality methods have been proposed for subvector inference, but typically do not
exploit the linear structure of our setting — see, e.g, Romano and Shaikh (2008); Chernozhukov, Newey
and Santos (2015); Bugni, Canay and Shi (2017); Chen, Christensen and Tamer (2018); Kaido, Molinari and
Stoye (2019). Cho and Russell (2019), Gafarov (2019), and Flynn (2019) also provide methods for subvector
inference with linear moment inequalities, but in contrast to our approach require a linear independence
constraint qualification (LICQ) assumption for size control.

1"Technically, the duality results require that 7 be finite. However, one can show that 7 is finite with
probability 1, unless the span of X contains a vector with all negative entries, in which case the identified
set for 0 is the real line. We therefore trivially define our test never to reject if /) = —oo.

18Tn general, there may not be a unique solution to the dual program. However, Lemma 11 of ARP shows

19



To construct critical values, Lemma 9 of ARP shows that conditional on the event ~, € v,
and a sufficient statistic .S, for the nuisance parameters, the test statistic 7 follows a truncated
normal distribution,

0] {7 € Vo, Sy = s} ~ €] € € [0, 0],

where £ ~ ./\/’(7;,&, 'y;f]n'y*>, i =E [?n(é)], Sy = (I — fg—:lw;)ffn(@), and v'°, v are
known functions of 3, s, 7,.'? All quantiles of the conditional distribution of # in the previ-
ous display are increasing in v, /i, and the null hypothesis (14) implies v, < 0. Therefore,
the critical value for the conditional test is the 1 — a quantile of the truncated normal dis-
tribution £|¢ € [v'°,v*?] under the worst-case assumption that v.ji = 0. Let ¢<(Y,(0),%,)
denote an indicator for whether the conditional test rejects at the 1 — a level. Proposition 6
in ARP implies that the conditional test controls size in the normal model (2). A confidence
set satisfying the uniform coverage criterion (10) can thus be constructed via test inversion,
cS, =10 : VC(Y,(0),%,) = 0}. Such confidence sets are easy to compute, because they
only require test inversion for the scalar parameter 6, and not for the higher-dimensional
nuisance 7.

ARP provide high-level conditions under which coverage in the normal model translates
to uniform asymptotic coverage over a large class of data-generating processes. In the supple-

mentary material, we provide analogous uniform asymptotic results under weaker, lower-level

conditions applicable to the difference-in-differences setting.

4.3 Consistency and optimal local asymptotic power of conditional
confidence sets
We now provide two results on the asymptotic power of the conditional test in our setting.

First, the conditional test is consistent, meaning that any fixed point outside of the identified

set is rejected with probability approaching one as the sample size n — co.
Proposition 4.1. The conditional test is consistent for all polyhedral A. For any 4 € A,
T4 €RT, and 0" ¢ S(04 + 74, A),

1’}1—{{)10 ]P)(‘SA,TA,E,L) (eout ¢ Cg:n) _

that conditional on any one vertex of the dual program’s feasible set being optimal, every other vertex is
optimal with either probability 0 or 1. It thus suffices to condition on the event that a vector v, € V.

9The cutoffs v and v"P are the maximum and minimum of the set {z : x = max,ep, ¥'(s + 7,275‘:77:90)}
B N % =n Yk
when v, X, 7« # 0, where F,, is the feasible set of the dual program (16). When v, X, v« = 0, we define

v!® = —c0 and v"P = o, so the conditional test rejects if and only if > 0.
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Thus, in contrast to the optimal FLCI, the conditional test is consistent for all polyhedral A.
Moreover, this result extends immediately to confidence sets for the case where A is the finite
union of polyhedra of the form considered in Lemma 2.2. In the supplemental materials,
we provide a uniform asymptotic version of this consistency result for points bounded away
from the boundary of the identified set.

We next consider the local asymptotic power of the conditional test. We provide a
condition under which the power of the conditional test against local alternatives converges
to the power envelope. This condition guarantees that the binding and non-binding moments

are sufficiently well-separated at points close to the boundary of the identified set.

Assumption 4. Let A = {0 : Ad < d} and fix 64 € A. Consider the optimizations:

b (Sagre) = M Spast st AT < d, e = S pre

bmm<6A,pre> = m(gin lldpost s.t. Ad < d7 5107"6 = 5A,pre

Assume there exists a solution 6* to b™*® such that that the rank of A(ps*)post) 15 equal to
|B(6*)|, where B(6*) denotes the index of the binding moments at 6*.*° Likewise, assume

there exists a solution 6** to b™™ such that the rank of A(p(s+)post) is equal to |B(6**)|.

Assumption 4 considers the problem of finding the differential trend 6 € A that is consistent
with the pre-trend identified from the data and causes Z’Bpost to be maximally (or minimally)
biased for 6 := 7). It requires that the “right” number of moments bind when we do this

optimization.

Remark 11 (Connection to LICQ). Assumption 4 is slightly weaker than linear indepen-
dence constraint qualification (LICQ), which has been used recently in the moment inequality
settings of Gafarov (2019), Cho and Russell (2019), Flynn (2019), and Kaido and Santos
(2014); see Kaido, Molinari and Stoye (2020) for a synthesis. We discuss this connection for-
mally in Appendix A.2. We note, however, that many of the aforementioned papers require
LICQ for asymptotic size control, whereas we impose Assumption 4 only for our results on

local asymptotic power. B

Remark 12. In the case with one post-treatment period (1" = 1), so that there are no
nuisance parameters, Assumption 4 is satisfied when there is one moment binding at the
edge of the identified set. This assumption holds everywhere for ASP(M) when M > 0. Tt
holds almost everywhere for ASPPB(M) when M > 0, although it fails when both the sign

restrictions and smoothness restrictions are simultaneously binding. When M = 0, both the

20That is, A(B((;*)’.)CS* = dB((;*) and A(,B((;*)’.)(S* — de(é*) = —€e_ps*) < 0.
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upper and lower bounds for AP (M) and ASPPB(M) are binding, so the assumption fails.

More generally, one can show that Assumption 4 does not hold if  is point identified. l

With this definition in hand, we can now formalize the sense in which the conditional test
has optimal local asymptotic power under Assumption 4. Again let Z,(A,Y,) denote the
class of confidence sets that satisfy the coverage criterion in (10) at the 1 — « level. Under
Assumption 4, the power of the conditional test against local alternatives converges to the

power envelope over Z,, (A, ¥,,) as n — 0.

Proposition 4.2. Fiz 6, € A, 74, and suppose X* is positive definite. Let 0% = sup, S(d4 +
Ta, A) be the upper bound of the identified set. Suppose Assumption J holds. Then, for any
x>0,

1 1
lim P, 05, (9“b+—x ¢C5n) = lim sup Pisyras, (9“b+—x ¢Can)
A Ponramn) O+ Jo) ¢ Con ) = Ji,  sup  Famamn B8+ 20 ¢ Co

=P¢(c*r — 21_4),

for a positive constant c*. The analogous result holds replacing 64 + \/Lﬁx with 0% — \/Lﬁa:, for
0% the lower bound of the identified set (although the constant c* may differ).

In the supplemental materials, we provide a uniform asymptotic analog to this result under
a uniform version of Assumption 4.

The proof of our novel local asymptotic optimality result proceeds in two steps. First,
we show that the local asymptotic power of any test that controls size is bounded above by
that of a particular one-sided t-test under Assumption 4. More specifically, Assumption 4
implies that there is a unique set of Lagrange multipliers 7 in the “population version” of the
test statistic (") that replaces Y (6*") with its expectation ji(#**) in (15). We show that
the optimal test is a one-sided t-test in the direction of 4 for alternatives sufficiently close
to 6“0, Second, we show that the conditional test converges in probability to this optimal
one-sided t-test.

An immediate corollary is that when A = Ule Ay, the conditional test based on the
union of confidence sets has optimal local asymptotic power when the A that determines

the identified set bounds is unique and satisfies the conditions of Proposition 4.2.

Corollary 4.1. Fiz 64,74. Suppose that (54, A1) satisfy Assumption /. If Ao, ..,Ak are
polyhedra such that S(04 + T4, Ag) & S(da + Ta, A1) for all k > 1, then the conclusion of
Proposition /.2 holds for A = Uszl Ar and an the union of the conditional confidence sets
for Ay, ..., Ag.
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This implies, for instance, that the conditional test has optimal local asymptotic power
for ABM (M) when there is a unique (non-zero) pre-treatment maximum violation, i.e. when
maxs—g |0s11 — 05| > 0 has a unique solution. Likewise, the conditional test is optimal for

ASPEM (M) when there is a unique maximum non-linearity in the pre-treatment period.

Remark 13 (Relationship to other moment inequality methods). We are not aware of results
analogous to Proposition 4.2 for any other moment inequality procedure that controls size
in the finite sample normal model. Observe that if Assumption 4 holds, then it also holds if
A is augmented to include a moment that is non-binding at both endpoints of the identified
set. Hence, for Proposition 4.2 to hold, the local asymptotic power of the test needs to
be unaffected by the inclusion of such slack moments. For example, although relatively
insensitive to the inclusion of slack moments, the procedures of Romano, Shaikh and Wolf
(2014) and Andrews and Barwick (2012) are still affected by the inclusion of slack moments

via the changes to the first-stage critical value and size-adjustment factor, respectively.?!

Remark 14 (Finite sample power of the conditional test). The argument for the optimal-
ity of the conditional approach relies on a unique vector of Lagrange multipliers 4 being
dual-optimal with probability approaching 1 asymptotically. The asymptotic guarantees of
Proposition 4.2 thus may not translate to good finite-sample performance in settings where
multiple vectors of Lagrange multipliers are optimal with nontrivial probability. Since a vec-
tor of Lagrange multipliers corresponds with a set of active moments in the primal problem
(15), this will tend to occur in cases where the set of binding and non-binding moments are

not “well-separated” relative to the sampling variation in the data. W

Remark 15 (Hybridization). To mitigate the poor power of the conditional test when the
binding and non-binding moments are not “well-separated,” ARP recommend the use of a
Bonferroni-like hybrid test that combines a first-stage test using least favorable (LF) critical
values with the conditional test. In Appendix B.1, we show that a similar hybrid test can
be constructed using FLCIs as well. We also show that when the size used for the first-
stage test is small, these hybrid approaches have near-optimal local asymptotic power under

Assumption 4.2. We evaluate these hybrid approaches in our Monte Carlo simulations below.

5 Simulation study

In this section, we conduct a simulation study to investigate the performance of the discussed

confidence sets across a range of relevant data-generating processes. We find good size control

2In concurrent work, Cox and Shi (2020) propose a new method for testing moment inequalities with
nuisance paramaters, which like the ARP test is strongly insensitive to slack moments. It is thus possible
that similar results could be obtained for their test as well.
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for all of the procedures, and therefore focus in the main text on a comparison of power to
provide concrete recommendations on the best approach in practice. In the supplementary

material, we present results on size control and other additional simulation results.

5.1 Simulation Design

Our simulations are calibrated using the estimated covariance matrix from the 12 recently-
published papers surveyed in Roth (2019). For any given paper in the survey, we denote by )
the estimated variance-covariance matrix from the event-study in the paper, calculated using
the clustering scheme specified by the authors. For a chosen mean vector 3, we simulate

event-study coefficients BS from a normal model, Bs ~ N <ﬁ, i).ﬂ In simulation s, we

construct nominal 95% confidence sets for the parameter of interest # using the pair (Bs, ﬁ)
for each proposed procedure. The parameter of interest is the causal effect in the first
post-treatment period (6 = 7,).%*

For a given choice of A, we compute the identified set S(3, A) and calculate the expected
excess length for each of the proposed confidence sets. We benchmark the expected excess
length of our proposed confidence sets relative to an efficiency bound for confidence sets that
satisfy the uniform coverage requirement.?* We report the efficiency ratio of each procedure,
which is defined as the ratio of the optimal benchmark relative to the average excess length
for the procedure. All results are calculated over 1000 simulations per paper.

We consider four choices of A to highlight the performance of our proposed confidence
sets across a range of conditions: ASP (M), ASPFB(M), ABM (M), and ASPEM (M), We
consider simulations under the assumption of zero treatment effects, so that 7 = 0 and thus
B = 6. We consider two forms for d. First, we consider the baseline case of parallel trends
(0 = 0). Second, we consider a “pulse” pre-trend in which ¢_; is non-zero and the remaining
elements of 0 are zero. Such a pre-trend might arise in practice if there are confounding

policy changes or other events close to the time of treatment. These different choices of ¢

22We focus on the normal simulations in the main text since it allows for a tractable computation of the
optimal excess length of procedures that control size. In the supplementary material, we show that our
procedures perform similarly in simulations based on the empirical distribution in the original paper.

23In the supplementary material, we provide simulation results in which the parameter of interest is the
average causal effect in the post-treatment periods (6 = Tpost), with qualitatively similar results.

24For choices of A that are convex (e.g., ASP (M) and ASPPBE(M)), we benchmark the expected excess
length of our proposed confidence sets against a sharp optimal bound over confidence sets that satisfy the
uniform coverage requirement. This optimal bound is provided in the supplementary materials, and follows as
a corollary from results in Armstrong and Kolesar (2018a) on the optimal expected length of a confidence set
satisfying the uniform coverage requirement (10). For choices of A that can be written as the union of convex
sets (e.g., ARM (M) and ASPEM(]NT)), we compare the expected excess length of our proposed confidence
sets against the maximal optimal bound over each set in the union, which is a potentially non-sharp bound
for any confidence set with correct coverage.
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Parallel Trends Pulse Pre-Trend
ASD(M) ASDPB(M) ASDRM(M) ARM(M)

Conditional (and Hybrids)

Consistent v v v v
Asymptotically (near-)optimal v v v X
FLCI

Consistent v X X X
Asymptotically optimal v X X X
Finite-sample near-optimal v X X X

Table 1: Summary of expected properties for each simulation design

allow us to highlight the relative strengths of the proposed inference procedures, since FLCls
have near-optimal expected length when § = 0 and A = AP (M), whereas the conditional
test has optimal local asymptotic power under the pulse design when A = ASPPB(Af).

In practice, we find that for ASP (M) and ASPFB(M), the results depend on M but are
qualitatively similar across values of §. By contrast, for ASPEM (M) and A®M (M), the choice
of § is more important than the choice of M. Therefore, to highlight the most important
dimensions for each of the simulation designs, in the main text of the paper we report results
for ASP (M) and ASPPB (M) under different values of M and § = 0 (parallel trends), whereas
for ABM (M) and ASPEM (M) we vary the magnitude of the pre-treatment pulse 6_;, holding
M =1 constant. In the supplementary materials, we report results for additional choices of
the parameters.

We report results for four methods for constructing confidence sets: FLCIs, conditional
confidence sets, and two hybrid approaches that combine the conditional test with either
a least-favorable moment inequality test or FLCIs (see Remark 15).° For AFM (M) and
ASPEM (M) we omit results for the FLCI and conditional-FLCI hybrid since the FLCIs
have infinite length. Table 1 summarizes which of our theoretical results hold for each of the

simulation designs.

5.2 Simulation Results

To compare results easily across the 12 papers in the simulation study, we normalize the
units of 6_; and M by the standard deviation of (denoted o). Comparative statics as the
normalized values of M or §_; grow large thus mimic the “small-3” asymptotics considered
above. In the graphs below, we report the median value of excess length efficiency across

the papers in the survey.

Z5We use a first-stage test of size k = /10, following ARP and Romano et al. (2014).
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Figure 1: Simulation results for ASP(M) and ASPFB(M): Median efficiency ratios for pro-
posed procedures.
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Note: Median efficiency ratios for our proposed confidence sets over AP (M) and ASPPB(M) under the
assumption of parallel trends and zero treatment effects (i.e., 5 = 0). The efficiency ratio for a procedure is
defined as the efficiency bound divided by the procedure’s expected excess length. The results for the FLCI
are plotted in purple, the results for the conditional-FLCI (“C-F Hybrid”) confidence interval in red, the
results for the conditional-LF (“C-LF Hybrid”) hybrid in blue, and the results for the conditional confidence
interval in green. Results are averaged over 1000 simulations for each of the 12 papers surveyed, and the
median across papers is reported here.

Figure 2: Simulation results for ASPEM(Af) and AFM(M): Median efficiency ratios for
proposed procedures.
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Note: Median efficiency ratios for our proposed confidence sets over ASPEM (A1) and ARM (M) with M = 1
under the assumption of zero treatment effects and a “pulse” pre-trend (i.e., f_; = d_1 and B; = 0 for all
t # —1). The efficiency ratio for a procedure is defined as the efficiency bound divided by the procedure’s
expected excess length. The results for the conditional-least favorable (“C-LF”) hybrid are plotted in blue,
and the results for the conditional confidence interval in green. Results are averaged over 1000 simulations
for each of the 12 papers surveyed, and the median across papers is reported here.

Results for ASP(M): The left panel of Figure 1 plots the efficiency ratio for each procedure
as a function of M /oy when A = ASP(M). All procedures perform well as M /oy grows large
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with efficiency ratios approaching 1, illustrating our asymptotic (near-)optimality results
for this design. However, the FLCIs perform best for smaller values of M /oy, including
the point-identified case where M = 0, illustrating the finite-sample near-optimality results
for the FLCIs when Assumption 2 holds. Although the conditional confidence sets have
efficiency approaching the optimal bound for M /oy large, their efficiency is only about 50%
when M /oy = 0 (and thus Assumption 4 fails). The conditional-FLCI hybrid substantially
improves efficiency relative to the conditional for small values of M /oy, while still retaining

near-optimal performance as M /oy grows large.

Results for ASPPB(M): The right panel of Figure 1 plots the efficiency ratio for each
procedure as a function of M /o, when A = ASPPB(M). The efficiency ratios for the condi-
tional and hybrid confidence sets are again (near-)optimal as M /oy grows large, highlighting
our asymptotic (near-)optimality results for these procedures in this simulation design. By
contrast, the efficiency ratios for the FLCIs steadily decrease as M /oy increases, reflecting
that the FLCIs are not consistent in this simulation design when M > 0. The conditional-
FLCI hybrid again improves efficiency relative to the conditional when M /oy is small and

retains near-optimal performance as M /oy grows large.

Results for ASPEM()[):  The left panel of Figure 2 plots the efficiency ratios for the con-
ditional and conditional-least favorable hybrid confidence sets as a function of §_; /o7 when
A = ASPEM (VL) We omit results for the FLCI and conditional-FLCI hybrid since the opti-
mal FLCI has infinite length for this design. Both procedures perform well as §_;/0; grows
large with efficiency ratios approaching 1, illustrating our asymptotic (near-) optimality

result for this design. Both procedures also have similar power curves.

Results for A (M): The right panel of Figure 2 plots the efficiency ratio for the con-
ditional and conditional-least favorable hybrid confidence sets as a function of ¢_; /o7 when
A = ABM(M). We again omit results for the FLCI and conditional-FLCI hybrid since the
optimal FLCI has infinite length for this design. The conditions for our asymptotic (near-)
optimality result for unions of convex sets do not hold in this simulation design (as the max-
imum pre-period violation is not unique). Nonetheless, we find that the conditional-least
favorable hybrid confidence set and the conditional confidence set perform quite well for
large values of §_; /01, with efficiency ratios approaching about 83%. This is encouraging as
it shows that these procedures may perform well even in cases where the conditions of Corol-
lary 4.1 fail. Once again, we also find that the conditional and conditional-least favorable

hybrid have similar power.
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5.3 Practical Recommendations

Two clear patterns emerge from our simulations. First, the FLCIs have the best perfor-
mance for AP (M), particularly when M is small, which aligns with the finite-sample near-
optimality results in Section 3. Second, the conditional approach and its hybrid variants
outperform the FLCIs for other choices of A where the consistency of the FLCIs is not
guaranteed.

We thus recommend the use of FLCIs for the case of ASP(M), where FLCIs are consis-
tent and have good finite-sample properties, and recommend a moment-inequality approach
for more general forms of A where consistency of the FLCIs is not guaranteed. The choice
between the conditional and hybrid approaches is somewhat more nuanced, as their perfor-
mance is quite similar in our simulation designs. We do find somewhat better performance
for the conditional-FLCI hybrid for ASPPB(M), and thus recommend this approach for this
choice of A. For ARM(M) and ASPEM (M), the FLCIs have infinite length, and we find
nearly identical performance for the conditional and conditional-least favorable hybrid. We
therefore tentatively recommend the least favorable hybrid approach following the recom-
mendations of ARP. We implement these recommendations in our applications in the next

section.

6 Empirical Applications

We recommend that applied researchers use our methods to conduct a sensitivity analysis
in which they construct robust confidence intervals for different choices of A. For example,
many of the As described above have a parameter M (or M) that determines the informa-
tiveness of the pre-trends about the post-treatment differences in trends. It is natural to
report sensitivity to the parameter M, as well as the “breakdown” value at which particular
hypotheses of interest can no longer be rejected.”® This analysis makes transparent what
assumptions need to be placed on the relationship between the pre-trends and the coun-
terfactural post-treatment differences in trends in order to draw particular conclusions of
interest. We illustrate such a sensitivity analysis in applications to two recently published

papers.

26Similar “breakdown” concepts have been proposed in other settings with partial identification (Horowitz
and Manski, 1995; Kline and Santos, 2013; Masten and Poirier, 2020).
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6.1 Estimating the incidence of a value-added tax cut

Benzarti and Carloni (2019, henceforth, BC) study the incidence of a decrease in the value-
added tax (VAT) on restaurants in France. France reduced its VAT on sit-down restaurants
from 19.6 to 5.5 percent in July of 2009. BC analyze the impact of this change using
a dynamic difference-in-differences design that compares restaurants to a control group of

other market services firms that were not affected by the VAT change, estimating

Yi = Z Bs x 1[t = 5] x D; + ¢; + M + €, (17)

572008

where Y;; is the log of (before-tax) profits for firm ¢ in in year ¢; D; is an indicator for
whether firm ¢ is a restaurant; ¢; and \; are firm and year fixed effects; and standard errors
are clustered at the regional level. BC’s main finding is that the VAT reduction had a large
effect on restaurant profits. Figure 3 shows the estimated event-study coefficients {3} from
specification (17). We can formally reject the hypothesis that 5,.. = 0 (p < 0.01), although

visually there appears to be a jump in the coefficients following treatment.

Figure 3: Event-study coefficients {5} for log profits, estimated using the event-study spec-
ification in (17).

Log profits
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The top left panel of Figure 4 shows a sensitivity analysis that plots robust confidence
sets for the treatment effect in 2009 using AP (M) for different values of M. The confidence
sets contain only positive values unless M exceeds 0.22. Thus, we can reject a null effect
on profits in 2009 if we are willing to restrict the slope of the differential trend to change
by no more than 22 log points between periods. To further contextualize these results, the
top right panel of the figure shows a sensitivity analysis using ASPEM (M), from which we
see that the breakdown value of M is about 1.5. This indicates that the significant effect

29



is robust to allowing a non-linearity in the differential trend that is about 1.5 times the
maximum observed in the pre-treatment period. Similarly, the bottom left panel shows a
sensitivity analysis for A®M (M), with a breakdown value of M ~ 2, indicating that we
would have to allow the violation of parallel trends between 2008 and 2009 to be roughly
twice the magnitude of the maximal pre-treatment violation to include a null effect in our

confidence sets.

Figure 4: Sensitivity analysis for § = 7909 for Benzarti and Carloni (2019)
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We can further tighten our bounds by including context-specific information. Since the
VAT cut occurred at the same time that a payroll subsidy for restaurants was terminated,
BC write, “a conservative interpretation of our results is that we are estimating a lower bound
on the effect of the VAT cut on profits” (pg. 40). This argument may be made precise by
further imposing that the bias of the post-period event-study coefficients is negative. The
bottom right panel of Figure 4 imposes the additional constraint that the sign of the bias be
negative — that is, we set A = ASPNB(M) := ASP(M) n {6 : Gpost < 0}. With this added
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constraint, the robust confidence sets now rule out effects on profits smaller than 15 log
points for all values of M, highlighting how our approach allows researchers to incorporate

informative context-specific knowledge to obtain more precise inference.

6.2 The effect of duty-to-bargain laws on long-run student out-

comes

Lovenheim and Willen (2019, henceforth LW) study the impact of state-level public sector
duty-to-bargain (DTB) laws, which mandated that school districts bargain in good faith
with teachers’ unions. LW examine the impacts of these laws on the adult labor market
outcomes of people who were students around the time that these laws were passed, compar-
ing individuals across different states and different birth cohorts to exploit the differential
timing of the passage of DTB laws across states. The authors estimate the following regres-
sion specification separately for men and women, using data from the American Community

Survey (ACS),

21
Yoot = Z DierBr + XY + At + G5 + €ser (18)
r=—11

Y. is an average outcome for the cohort of students born in state s in cohort ¢ in ACS cal-
endar year t. Dy, is an indicator for whether state s passed a DTB law r years before cohort
c turned age 18.%" The event-study coefficients { Br} estimate the dynamic treatment effects
(or placebo effects) r years after DTB passage.”® The remaining terms include time-varying
controls, birth-cohort-by-ACS-year fixed effects, and state fixed effects. We normalize the
event-study coefficient 3_, to 0.2 We focus on the results where the outcome is employment.
Figure 5 plots the estimated event-study coefficients {Br} from specification (18). In
the event-study for men (left panel), the pre-period coefficients are relatively close to zero,
whereas the longer-run post-period coefficients are negative. By contrast, the results for

women (right panel) suggest a downward-sloping pre-existing trend.

27Dsc,_11 is set to 1 if state s passed a law 11 years or more after cohort ¢ turned 18. Likewise, Dy 21 is
set to 1 if state s passed a law 21 or more years before cohort ¢ turned 18.

28Treatment timing in LW is staggered, and therefore the results in Sun and Abraham (2020) imply that
B, can be interpreted as a sensible weighted average of causal effects under parallel trends only if treatment
effects are homogeneous across adoption cohorts. For simplicity, we focus on the robustness of the results
to violations of parallel trends using the original specification in LW, which is valid under the assumption
of homogeneous treatment effects. As discussed in Remark 1, our sensitivity analysis can also be applied to
estimators that are robust to treatment effect heterogeneity.

29LW normalize event time -1 to 0, but discuss how cohorts at event time -1 may have been partially
treated, since LW impute the year that a student starts school with error. Since our robust confidence sets
assume that there is no causal effect in the pre-period (7, = 0), we instead treat event-time -2 as the
reference period in our analysis.
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Figure 5: Event-study coefficient {g,} for employment, estimated using the event-study

specification in (18).

Male Employment (p.p.)

]{%HH%*'*him%mmmmﬁ

40 5 0 5 10 15 20
Event time

Female Employment (p.p.)

Event time

Figure 6 reports results of a sensitivity analysis for the treatment effect on employment

for the cohort 15 years after the passage of a DTB law (as in Table 2 of LW), constructing

robust confidence sets under varying assumptions on the class of possible violations of parallel

trends. In blue, we plot the original OLS confidence intervals for Blg, from specification (18).
In red, we plot FLCIs when A = ASP(M) for different values of M; recall that M = 0

corresponds with allowing only for linear violations of parallel trends, and larger values of

M allow for larger deviations from linearity. In the sensitivity analysis for men (left panel),

the FLCIs are similar to those from OLS when allowing for violations of parallel trends that

are approximately linear (M ~ 0), but become wider as we allow for more non-linearity; the

Figure 6: Sensitivity analysis for § = 75 using A = ASP(M)
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breakdown value for a significant effect is M ~ 0.01. For women (right panel), the original
OLS estimates are negative and the confidence interval rules out 0. When we allow for linear
violations of parallel trends (M = 0), however, the picture changes substantially owing to
the pre-existing downward trend that is visible in Figure 5. Indeed, for M < 0.01 the robust
confidence set contains only positive values. Intuitively, this is because the point estimate
for t = 15 lies above a linear extrapolation of the negative pre-trend. Thus, if we were to
impose the same smoothness restrictions for men as for women, we would either have to
reconcile significant effects of opposite signs by gender (if M < 0.01) or we would not be
able to rule out null effects for both genders (M > 0.1).

Sensitivity analyses using AFM (M) or ASPMB(M) do not allow us to obtain informa-
tive inference unless we are willing to impose that the post-treatment violations of parallel
trends (or changes in their slope) are substantially smaller than those in the pre-treatment
periods, with breakdown values of M of 0.1 or less for both genders and both As (see Ap-
pendix Figure D.1). We therefore consider a calibration exercise based on the magnitudes
of possible possible confounds: if violations of parallel trends were driven by confounding
changes in education quality, what would a given value of M imply about the evolution of
those confounds? Chetty, Friedman and Rockoff (2014) estimate that a 1 standard deviation
increase in teacher value-added (VA) corresponds with a 0.4 percentage point increase in
adult employment. Hence, a value of M = 0.01 would correspond with allowing the slope of
the differential trend to change by the equivalent of a one-fourtieth of a standard deviation
of teacher VA across consecutive periods. Since the robust confidence sets for both men and
women begin to include zero around this value of M, the strength with which we can rule out

a null effect depends on our assessment of the economic plausibility of such non-linearities.

7 Conclusion

This paper considers the problem of conducting inference in difference-in-differences and
related designs that is robust to violations of the parallel trends assumption. We introduce a
variety of restrictions on the class of possible differences in trends that formalize commonly
made arguments in empirical work. We provide inference procedures that are uniformly valid
so long as the difference in trends satisfies these restrictions, and derive novel results on the
power of these procedures. We recommend that applied researchers use our methods to
conduct formal sensitivity analyses, in which they report confidence sets for the causal effect
of interest under a variety of possible restrictions on the underlying trends. Such sensitivity
analyses make transparent what assumptions are needed in order to obtain informative

inference and help researchers assess whether those assumptions are plausible in a given
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setting.
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This online appendix contains proofs and additional results for the paper “An Honest
Approach to Parallel Trends” by Ashesh Rambachan and Jonathan Roth. Section A collects
together additional results that are referenced in the main text. Section B discusses a hybrid
approach using FLCIs and the conditional test. Section C contains proofs and auxiliary
lemmas for the results in the main text. The supplementary materials provide statements

and proofs of uniform asymptotic results along with additional simulation results.

A Additional Results

A.1 Optimal local asymptotic power of FLClIs

As discussed in Remark 9, the FLCIs have local asymptotic power converging to the power
envelope provided that Assumptions 3-4 are satisfied. We now formally state this result; the

proof is given in Section C.

Proposition A.1. Fiz 64 € A, 74 € RT and suppose X* is positive definite. Let g4 =
supy S(A, 64+ 74) be the upper bound of the identified set. Suppose that Assumption J holds
and 04 pre satisfies Assumption 5. Then, for any x > 0 and a € (0,0.5],

) u 1 . u 1
lim Pgs, 745, ((HAb + \/—ﬁx) ¢ Ciﬁm) = lim sup Psara,50) ((QAb + \/—ﬁx) ¢Ca7n> )

n—o =D n€la(AS))

The analogous result holds replacing 64 + \/iﬁx with 6% — \/Lﬁx, for 0% the lower bound of the
identified set.

Thus, CELY" behaves similarly to CS,, as n — oo when both Assumptions 3-4 hold.

A.2 Connection to linear independence constraint qualification (LICQ)

We now draw connections between linear independence constraint qualification (LICQ) and

Assumption 4, under which the power of the conditional test converges to the power envelope
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asymptotically. We show that LICQ implies Assumption 4. Our discussion follows the
notation of Kaido et al. (2020).

Suppose A = {0 : Ad < d}. Let m(7post: ) = A(B — MpostTpost) — d, and let T(A, ) :=
{Tpost © M(Tpost; B) < 0} be the identified set for the full parameter vector 7,,s. Define the

set of support points in direction p to be S(p, T) := {Tpost © P'Tpost = SUD,. e P/ Tpost -

Definition 2. The linear constraint qualification (LICQ) is satisfied in the direction p if,
for all support points in the direction p, the gradients of the binding constraints are linearly
independent. That is, for all 7, € S(p, T), the set {D. ., m;(Tpost; B) © Mj(Tpost, 3) = 0} is

linearly independent, where D denotes the gradient with respect to 7p,s;.

Tpost
Our next result shows that LICQ in the directions [ and —[ is equivalent to a slightly

stronger version of Assumption 4.

Lemma A.1. Suppose a4 = 04 + MpostTapost for some 64 € A = {6 : Ad < d} and
TA post € RT. Then the following are equivalent: (i) LICQ is satisfied in the direction l; (ii)

For any solution 0** to the linear program
V™ (S apre) = main Upost 8.1 Ad < d, 0pre = 4 pre,

the matriz A(p(s++)post) With rows corresponding with the binding inequality constraints at

d** has rank |B(6**)|. Analogous results hold replacing | with —I in (i) and min with max
in (i).

Proof. We first show (i) implies (ii). Let 6** be a solution to the minimization problem for

O™ Let T, = Bapost — Oney- Observe that I'm%, = 184 post — 0™ (0apost). From (7),
we then see that I'7%%, = 6" and hence 7)% € S(I,T). Now, note that by construction,
m(Ba, Trost) = A(Ba — MposiTjosy — d) = A6™ — d, so the binding constraints in m(B4, Ty

correspond with the binding constraints in the minimization for 5™". Finally, observe that

Dy (Ba, Trot) = A(posty- 1t then follows from (i) that the rows of A(p(s+#) post) are linearly
independent, which gives the desired result.

Conversely, suppose Ty, € S(I,7). By definition, there exists some 0** € A such that

= 4 — MpostTpsy, and I'Ty, = g0, Thus, 0% = I’ Bapost — U'0**. It then follows from

(7) that I'0** = 0™ (04 ), SO 0** is a solution to the optimization d™™. (ii) then implies

that A(p(s#* post) has linearly independent rows. By the same argument as earlier in the

proof, A(p(s#* post) corresponds with the matrix of gradients for the binding constraints in

m(Ba, Tyot), from which we see that LICQ is satisfied. O

Therefore, if LICQ holds in the directions [ and —I, then Assumption 4 is satisfied.
Indeed, if LICQ holds, then Lemma 4 implies that the rank condition in Assumption 4 holds
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for any solutions 0* and 6** to the problems ™% and b™". By contrast, Assumption 4 only
requires the rank condition to hold for at least one solution to 0™ and b™™". It is possible
for a linear program to have multiple solutions, and for the rows of the binding constraints
to be linearly independent (non-degenerate) for some solutions but not for others (e.g., see
Example 1 on p. 146 of Sierksma (2001)). Assumption 4 is thus potentially weaker than
LICQ if there are multiple solutions to the optimizations for ™% or ™" but equivalent

when the solutions are unique.

B Conditional-FLCI Hybrid Confidence Sets

As discussed in Remark 15, ARP recommend a Bonferroni-type hybrid approach that uses
tests based on least-favorable critical values in combination with the conditional test. In this
section, we show that a similar hybrid approach can be applied using FLCIs in place of the
least-favorable tests.

The conditional-FLCI hybrid confidence set is constructed by first testing whether a
candidate parameter value lies within the level-(1 — k) optimal FLCI, and then applying a
conditional test to all parameter values that lie within the optimal FLCI. The second stage
uses a modified version of the conditional test that i) adjusts size to account for the first-stage
test, and ii) conditions on the event that the first-stage test fails to reject.

Formally, suppose that 0 < x < a.?’ Consider the level (1 — k) optimal FLCI, CFE¢T =
an + U;Bn + x». Lemma B.2 below shows that the distribution of the test statistic 7 de-
fined in (15) follows a truncated normal distribution conditional on the parameter value
0 falling within the level (1 — x) optimal FLCI. With this result, the construction of the
second-stage of the conditional-FLCI hybrid test is analogous to the construction of the
conditional test, except it uses the modified size @ = =
The conditional-FLCI hybrid test wgaF Lot (Bn, 9, ZN]n) rejects if and only if either 6 ¢ C’E Lot

or Fi el denotes the CDF of the

to account for the first-stage test.

77) > 1 — 6[, where F§|§E[

DZC?—FLCI’UZI—)FLCI] ( UZC?—FLCI’UZZ—)FLCI] ()
truncated normal distribution derived in Lemma B.2 below.

Since the FLCI controls size, the first stage test rejects with probability at most x under

a—kK
1—-k

conditional on 6 € C/LC!. Together, this implies that the conditional-FLCI hybrid test

the null that § = 6. The second-stage test rejects with probability at most & =

controls size,

sup sup E(é,‘r,zn) [ /g:_aFLCI(Bna 0_7 in)] < Q. (19>
dEA,T DeS(A6+T)

30In practice, we set k = «/10 following Romano et al. (2014) and ARP, although the optimal choice of &
is an interesting question for future research.
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We therefore construct a conditional-FLCI hybrid confidence set for the parameter 6 that sat-
isfies (10) by inverting the conditional-FLCI test, denoting this confidence set as Cgf Ler.—
{0 0T (5,,0, %) = 0},

The following two results show that the conditional-FLCI hybrid confidence set inherits
some desirable asymptotic properties from the conditional approach: it is asymptotically
consistent, and under the same conditions as Proposition 4.2, the conditional-FLCI hybrid

test has local asymptotic power at least as good as the optimal ¢== test. (The proofs of

these results are provided in Section C.)

Proposition B.1 (Consistency). The conditional-FLCI hybrid test is consistent. For any
dae N, 7aeRT, 09 ¢ S(A, 64 +74), e (0,0.5], and k € (0, ),

lim ]ID(5A,TA,En) (Qout ¢ CC’-FLC’I) =1.

oo K,0,Mn

Proposition B.2 (Local asymptotic power). Fiz 64 € A, T4, and ¥* positive definite. Sup-

pose Assumption / holds. Suppose a € (0,0.5], k € (0,a), and let & = §==. Then,

1 1
liminf P, 1,5, ( 0% + —z ¢C,§'OCF7LLCI> > lim sup Pisyras, ( 6% + —1) ¢ Can) .
P (64,74,2n) ( A \/ﬁ ) o, e, T (A (04,74,2n) ( A \/ﬁ ) ,

The analogous result holds replacing 6% + \/iﬁx with 0% — \/Lﬁx, for 0% the lower bound of the
identified set (although the constant ¢* may differ).

ARP show that a hybrid that uses least-favorable critical values in the first stage always
rejects when the size & conditional test rejects. It is thus immediate that analogs of the

previous two propositions hold for the LF hybrid as well.

B.1 Auxiliary Lemmas for the Conditional-FLCI Hybrid Confidence
Sets

We now derive the truncated normal distribution used to construct the conditional-FLCI
hybrid confidence sets. We first provide a lemma that implies that the affine estimator at
which the optimal FLCI is centered can be written as an affine function of AB , where recall
that A is the matrix defining the polyhedral set, A = {§ : AJ < d}.

Lemma B.1. Suppose A = {0 : A§ < d} # @, and (a,v) are such that b(a,v) < 0. Then,

there exists U such that v = ' A.

Proof. Note that
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b(a,v) = max |0/ (0 + MposiTpost) — ' Tpost| 5-t. A6 — d < 0.

évaost

We will show that if b(a,v) is finite, then for all 6 € A, Ad = 0 implies v/0 = 0. This
implies that v is in the rowspace of A, from which the result follows. To prove this, suppose
towards contradiction that ¢ is such that A5 = 0 and v'é # 0. Since A = 0, it follows that
de := (dp + C- 5) is in A for any dp € A and ¢ € R. However, it then follows that for any fixed
Tpost and g, the objective in the previous display can be made arbitrarily large at (Jc, Tpost)

by taking ¢ — oo. O]
Consider the level 1 — k optimal FLCI, CFLCI = a, + v,’lﬁn + x»n. By Lemma B.1, there

exists some vector v, such that the level 1—x optimal FLCI can be written as an+i},’1AﬁAnixn.
Since f/n(@) = AﬂAn — 121(.,1)9 — d, it follows that 0 € Ciﬁm if and only if

)

);
).

n(é) < Xn— Qp — @;Ld + (1 — 177/1121(.71))
— Y (0) < Xn + @y + 0hd — (1 — 0, A1)

)

One can further show that (1 — ¢/ A(.J))é) = 0, which simplifies the upper bounds above.*!
Defining the matrix V, = (#/,, =)’ and the vector d,(#) which stacks the upper-bounds of
the inequalities in the previous display, we see that the optimal level 1 — x FLCI contains
the parameter value 6 if and only if V,Y;(8) < d,(f).

With this equivalent representation of the optimal FLCI, we can now characterize the

distribution of the test statistic 7 (15) conditional on the parameter 6 falling within the
optimal FLCI.

Lemma B.2. 7| {7* eV, S, =s0¢ CFLCI} ~ &€ V8 o v prer), where § ~ N (m’kﬂ, vfkinv*),

v pror = max{v, v o}, v prop = min{o? v o} 01 and v are as defined in Sec-
tion 4.2, v'%, oy = max n(0);= (VnSn); , U o i= min Dn(0);=(VnSn)j
{ (Vnc’ﬂ ’Y*) <O} (Vncn ’Y*)] { (Vnc” "/*) >0} (Vncn,"/*)]-
= % and S, = (I — ,E;—”’:'y*)Y (0), and v, is the vector of Lagrange multipliers
g —n Tk
for the primal problem (16).

C”?’Y*

Proof. The proof follows an analogous argument to Lemma 9 in ARP. Recall that conditional
on v € V,, i = 7.Y,. Recall also that 0 € CFLCT if and only if V.Y, < d,. Observe that the

set of values of Yn such that

ALY, = (max*y’f/n sty > 0,7’[1(.,_1) =0,76, = 1) and VY, < d,

31 Applying the definitions of A and o, we obtain that @ A( 1) =y, postl Le;. However, we show in the

proof to Lemma C.19 that vy, post = ([, SO vnA(,J) = [''"le;. The result then follows from the fact that
€)' =1’ by construction.
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is convex. This follows from the fact that if the expression above holds for both Y,, and Y/T;“,
then .Y, > ~'Y, and 7.Y* > ~/Y* for all 5 feasible in the maximization. It then follows
that 7. (aY*+(1—a)Y,) = v (aY* +(1—a)Y,) for any a € (0,1). Thus, (aY* +(1—a)Y,) is
also equal to the maximum. It is likewise clear that the second constraint holds for a convex
combination of ¥, and Y*.

Thus, once we condition on .S,,, the set of values of ”y;ffn such that v, € Vn and V.Y, < d,
is an interval. It thus suffices to find the endpoints. Without loss of generality, we focus on
the lower bound. For ease of notation, let F := {7 = 0,7'A. 1) = 0,7'G,, = 1} denote the

feasible region for the maximization. Then we are interested in

min {W;an ALY, = max+'Y, ,V,Y, < Jn} )

{Yn:Sn:s} YEF
Recalling that S, = (I — ¢y, 7)Yy for ¢pry = jy: , the expression becomes
g —n Yk

_min {’Y;Y/n : %/.j/n = max "y’ <s + cnﬂ*yfkf/n> VLY, < Jn} ,
{Yn:Sn=s} veF

which is equivalent to

min {{aj X = m%xfy/ (s + cnﬂ*x)} N {'y;ffn - Y, st. S, = s, V.Y, < dn}} .
~e
However, the first set in the minimization above is the interval [v°,v"?], and the polyhedral
lemma in Lee, Sun, Sun and Taylor (2016) (Lemma 5.1) implies that second set is the
interval [v%, o7, vir o). Thus, the expression above is max{v'’, v, ~;}, as desired. The
argument for the lower bound of the interval is analogous. Finally, the independence of +.Y,,
CFLCI
n,K

and S, implies that the distribution of fy;ffn conditional on {fy* € Vn, S, =s0¢ } is

truncated normal. N

C Proofs of Finite Sample Normal Results

C.1 Proofs of Main Finite Sample Normal Results

Throughout the proofs, we will use the following notation. Let Y(Bn, A d,f) = ABn —d—
/1(.71)97. Define 1€ (Bn; A, d, 0,%) == S (Y (B,; A, d, 0), ALA) to be an indicator for whether
the conditional test constructed using (Bn, A,d,0,%) rejects. For a matrix A, we use A,
to denote the sub-matrix of A defined by the index B.
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Proof of Lemma 2.2

Proof. By equation (8), we can write the coverage requirement as

inf inf  inf Pu.so | 0e| |Cop ],
(5ég,7' 1% 068(22,54—7’) (8,7, 2n) ( Lk/J 7k>

which is bounded below by

inf inf inf Py, 0eCni),
SeAT  k 0eS(Ag,0+7) (550 ( )

which is at least 1 — a since C,,, satisfies (10) for A = Ay. O

Proof of Proposition 3.2

Proof. First, suppose Assumption 3 holds. Without loss of generality, we show P ((Q“b + )€ Cf, Ler ) —
0 for any = > 0. By Lemma C.20 there exists (a, 0) such that b(@, v) = 1LID(A, pre) =: biin

and Es, 75 [EL + E’Bn] = %(9“b + 0) =: g™, Let C, := a + VB, + Xn(a,v) denote the

fixed length confidence interval based on (a,v).

By construction, X, := x»(@,?) is the 1 — o quantile of the [N (b, 02,,) | distribution.
1

Since 02, = 202, — 0, the [N (bpin, 02,,) | distribution collapses to a point mass at byn,

and thus y, — bp,. By construction the length of the shortest FLCI x,, := xn(an, vp)
must be less than or equal to Y,, and so limsup,,_,,, Xn < bynin. Let b, := l_)(an,vn) be the
worst-case bias of the optimal FLCI. Since « € (0,.5], Lemma C.21 implies that x,, = b,.
Additionally, Lemma C.19 implies that b, > %L[ D(A,8pre) = bin, and thus X, = bpin.
Hence, X, — bpmin implies b, — bpin. Additionally, note that for a € (0,0.5], xn(a,v) is
increasing in both b(a, v) and o,,,. Since byin < b, and Y, < Xn, it must be that o,, ,, < 040,
from which it follows that o, , — 0.

Now, we claim that p, 1= E, r,.5,) [an + v;Bn] converges to M = %(9“ + 0. To
show this, note that p, = a, + v/,84 for f4 = 84 + 74. Since % 0" € S(A,54), by the
definition of the identified set there exist 6*°, 6" € A and 7%, 7' such that f4 = 6% + 7% =

o + 7 gt = I'rih and 0" = I'7l . Thus, 6*° — Esu ruw s, [an + U;Bn] = 0 — p1,, and

E s 70 5,.) [an + v;ﬁn] — 0% = p,, — 0. This implies that b, > max{0“® — p,, p, — 0°} =
bmin + |ttn — ™|, where the equality uses the fact that 6** — 6% = LID(A,§ Apre) = 2b,im-
Since we’ve shown that b, — by, it follows that j, — 0™, as desired.

Next, note that if 8, ~ N (64 + 74, 5, then ay, + v/, ~ N (ttn, 02, ). Observe that
0 € CLLCT if and only if a, + v/,5, € [0 — Xn,0 + Xn]. Thus,
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_ é n - n é - n - n
Bs,nm (72 CFLCT) — (M) o (M) .

Ovn,n

Now, recalling that *® = 6™ +p, ... by construction, we have Psara,sn) ((9“b +1x)€ Cof:ﬁm)

equals

emid Z_) _ Hmid [_) _ _
q)< + bmin + T+ Xn un)_@< + bpin + T — Xn Mn). (20)

Ovp,n Ovp,n

Note that the term inside the second normal CDF in the previous display equals

Xn—bn+x+9mid—un+l_)mm—bn

Oy, T Ovy, )1

However, the first summand above is bounded between —z;_,/, and —z;,_, by Lemma C.21.

Additionally, we’ve shown that ™ — 1, — 0 and by, — b, — 0, so the numerator of the

second summand converges to > 0. Since the denominator o,, , — 0, the expression in the
previous display diverges to o0, and hence the second normal CDF term in (20) converges to
1, which implies that P ((6** + z) € CELYT) — 0, as needed.
Conversely, suppose Assumption 3 fails. Let Ly := LID(A, 64 ) and L := SUp; en,,. L1 D(A, Spre).
By Lemma C.19, b, = b(a,,v,) = %E =: byn. As argued earlier in the proof, since
1

o€ (0,.5], Xn = by = 5L. If L = oo, then CELC! is the real line, and thus never rejects,

so CELCT is trivially inconsistent under the assumption that Sp(A,d4 + 74) # R. For the

pre

remainder of the proof, we assume L, < L < 0. From Lemma 2.1, S(04 +74, A) = [0, 0%],
where 6" — 0" = LID(A,éape) = La. Let € = 3(L — La), and set 69" := 6" + ¢ and
05t := 0" — €. Let 0™ = 2(6** 4 6') be the midpoint of the identified set. By construction,
o9t — gmid = gmid — ggut — 1L + € < 3L. Since CILY" is an interval with half-length at
least 3L, it follows that if 0™ € CILCT then at least one of 67", 03" is also in CLLCT. Hence,
P (09" € CIECT) +P (05" € CLECT) = P (0™ € CELYT) = 1—a, where the final bound follows
FLCI

since C5LY" has correct coverage. It follows that limsup,, P (09 € CJ5CT) = 1(1—a) > 0

for at least one j € {1,2}. O

Proof of Proposition 4.1

Proof. Lemma 2.1 showed that the identified set is an interval, S(64 + 74, A) = [0, 4],
and so if 6°“ ¢ S(64 + T4,4), then we must have either §° = > + x or §°* = 9! — x for

some z > 0. Without loss of generality, consider the case #° = §** + z, so

liminf P, ., 5 (6 ¢ CS,)) = liminf B, -, 5, [¢g (B A, d, 0% + z, zn)] .
’ n—0o0

n—o0
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Lemma C.2 along with X,, = %E* imply @bg(ﬁn, A d, 0% +x,%,) = @bg(\/ﬁ,@’n, A, \/nd, \/nf"0+

v/nx,¥*). Thus,

lim inf P, 7 ) (0 ¢ CS) = lim inf Bz, yir 24) [¢§ (B; A, v/nd, /0™ + \/nz, z:*)] ,

where we further used that 3, ~ N (84, 3,) implies v/nfy ~ N (v/nfB4, *). Lemma C.1
implies that /nf" = 0%, for 0> = sup S(\/nds ++/n7a,A,) and A, = {§ : A < /nd}. Tt

follows from Lemma C.18 that

E(\/EJA,\/HTA,E*) [wg(BTH A7 \/ﬁd7 \/HGUI) + \/ﬁxa E*)] = IOLB(\/EQ% E*)7

for prp a function with limz o prp(%,2*) = 1. It is immediate from the previous two
displays that lim, . P(s, 74,5, (901“ ¢ an) = 1 as desired.

O

Proof of Proposition 4.2

Proof. We show that each of the limits in the proposition equals ®(c*z — 2;_,). Following

the same steps as proof of Proposition 4.1, the first limit of interest can be written as

n—0o0

. m 1 . A u *
lim P, -5 ((9 b4 \/—ﬁx) ¢ cgjn) = lim B g, iy ) [wS (Bn; A, /nd, 0" + 2,2 )] .

The term on the right-hand side converges to ®(c*z — z;_,) by Lemma C.8.

We next turn to the second limit. Consider testing Hy : 6 € A = {§ : AS < d},0 =0

against Hy : (§,7) = (64,74). Observe that the null is equivalent to Hy : 8 € By(f) :=
{B : I7post St U'Tpost = 0,AB —d — AM st Tpost < 0} and the alternative is equivalent to

:B =04+ Ta =: Ba. It is clear from the definition of By that it is convex. From Lemma

C.5, the most powerful test that controls size is a one-sided t-test (Neyman-Pearson test)

that rejects for large values of (84 — 3,)'S:23,, where 3 := arg ming.g, ||B4 — Bl|z,. Define
Wfp(ﬁn; A,d,0,%,,04,74) to be an indicator for whether the Neyman-Pearson test rejects

Hy in favor H; given a draw Bn that is assumed to be normally distributed with covariance

>n- The second limit can thus be written as

1
lim sup P 0A,TA SN <(9Ub + _33) ¢ Ca,n) =
n—o0 Ca,nEIa(Aviz*) ( A ) \/ﬁ

. s w1
7}1_1}30 E((SA,TA,En) lwyp(ﬁn; A7 d, 0 b + \/_ﬁxa Ena 6147 TA)]
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From Lemma C.6 and the fact that ¥, = 1%, YMP (B A, d, 6" + \/Lﬁxjijm(SA,q—A) -
VMP(nBa; A, /nd, /™ + x, 5% \/nda, /n7a). Tt follows that

, 1 e
lim sup Pls,ra.50 ( 0" + —1x) ¢ Ca,n) =
o0 T (AS,) amaa) | ( Vn )
(2)

E(isaiase) |V (Bui A, Vnd, V0™ + 2, 5%, nda, ira) | 2
E(\/ﬁéA,\/ﬁTA,E*) [wéwp(én7 A7 \/ﬁda ezb +z, E*u \/E(th \/ETA)] (32 @(C*LE’ - Zlfa)y

where (1) used that if 8, ~ N (84, 1¥*), then nB, ~ N (vnBa, £*), (2) used that
0% = \/nf* and (3) follows by Lemma C.12. O

Proof of Corollary 4.1

Proof. Let Cg,’f be the conditional confidence set for Ag. Proposition 4.2 implies that

. . 1
lim Pes, 745 ((9A + Tx) ¢CS ) = lim sup Ps5arasn) ((9A + TI‘) ¢ C, n)

n—0 N=0 ¢, n€Za(A1,50)

1
> lim sup P(54,m0,50) < [ —— ¢Can)
oD 0, e (A) (04,74 ( A \/* )

where the inequality follows from the fact that Z,(A,%,) € Z,(Aq, X,) since S(8,4) <
S(B8,A). To complete the proof, we will show that

u 1 . Y 1
Al_r)n ]P)((SA TA,2n) ((eAb + \/—ECL’) ¢ Cocz:i) = 7}1_{20 P(5A77'A72n) ((eAb + \/—EI) ¢ Ucocz:’rlf> )
for which it suffices to show that for all k£ > 1,
ub 1 C.k
Y}I_I)H ]P)((SA TA,Xn) <9A + \/—ﬁ]ﬁ') ¢ Ca,n = 1.
Since S(04 + 74, Ar) & S(04 + Ta, A1), we have from equation (8) that 6% is strictly larger
than the upper bound of S(d4+74, Ax). The convergence in the previous display then follows
almost immediately from Proposition 4.1. The one technical complication is that rather
than a fixed point outside the identified set, we are considering power against a sequence

converging to a fixed point outside the identified set. It is, however, straightforward to verify

that the argument in Proposition 4.1 applies if we replace 0** + 2 with 6“* +z +O(n~"?). O

Proof of Proposition A.1
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Proof. Following the same argument as in the proof to Proposition 3.2, we can show that
P(sarasn) ((9“b + =) € Ciﬁ01> equals

emid"i_l_)min"i_i"")(n_ﬂn Hmld"f'l_)mzn"i_i_Xn_,U/n
o ( Vo —® Vo , (21)
Ovnn Ovn,n

where b,,;, = %LID(A, Sapre)s fn = An + U}, (64 +T4), and 0™ is the midpoint of S(A, 04 +
T A)-
The term inside the second normal CDF in the previous display equals
" — bn T Qmid _
X + +
Ovn,n \/ﬁgvn n Oy, N

(22)

We first show the first term in (22) converges to —z;_,. Since x,, is the 1 — « quantile of the

N (bn, Ogmn) | distribution, ® (X ) - (X—) =1 — a. Lemma C.25 implies

O-’Un ,n O-’Un n

that by, = %supgm LID(A,SPM) > 0. We argued in the proof to Proposition 3.2 that
—Xn — bn
Ovn,n

by = byin > 0, xn = 0, and Ouv,mn — 0, from which we see that — —oo. It follows

—b —b
that ® (Xn n) — 1 — «, and hence Xn 70, Z—oy-
Uvn,n Uvn,n
Next, we show the second term in (22) converges to ¢*z, for the same constant ¢* as in

x x
N0y,

Proposition 4.2. Lemma C.23 implies that lim,, . = lim,, , where

x
- nos a 05,1

v is the unique value such that there exists (a,v) with b(a,v) = bp,. Moreover, Lemma
C.22 implies that 1/051 = ¢*, from which we see that the limit of the second term is c¢*z, as
desired.

Now, we show the third term in (22) converges to 0. We argued in the proof to Proposition

. - bn - bmm
3.2 that |u, — Gm’d| < b, — byin. It thus suffices to show that ————— — 0. Lemma C.22

Oup, n

implies that there is a unique pair (a,v) such that b(@,?) = bunin. Let Xn = Xn(@,?) and
Xn = Xn(@n,v,). Note that x,, < ¥, by construction, and b, > bimin by Lemma C.19. Hence,

using the bounds from Lemma C.21, we have that b, +0,, n21-a < Xn < Xn = 05.0CVa (bm—”> ,

Op,n
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which, along with the inequality b,, = b,,;,,, implies that

= | cv, — | 21— + +
O"D,n Ui,n
O%,n bmzn bmin bmm
— -1 CUq — — .
Uvn,n U@,n Uvn,n Uﬂ,n

The first bracketed expression in the upper bound above converges to 0 by Lemma C.24.

Applying the upper bound from Lemma C.21 to the cv, term in the second bracketed expres-
sion, we obtain that the second bracketed expression is bounded above by (ﬁ — 1) 21—a/2,
O—Unv

which converges to 0 by Lemma C.23.

Combining the results above, we see that the expression in (22) converges to c¢*x —
21—a- 1t follows that limsup,_, P <(9“b + \/iﬁ) € Ciﬁ01> < 1 — P(c*zr — 21-4), and hence
liminf,, ., P <(6’“b ) ¢ CFLCI) > ®(c*r—2,_,). Proposition 4.2 gives that ®(c*z—2;_,)
is the optimal local asymptotic power over procedures that control size, from which the result

follows. u

Proof of Proposition B.1

Proof. The proof follows from the same argument as for Proposition 4.1, replacing Lemma
C.2 with Lemma C.4, and Lemma C.16 with Lemma C.17. O

Proof of Proposition B.2

Proof. By an invariance to scale argument analogous to that in the proof of Proposition 4.2,
liminf, oo P(s, ra,50) <(0ff‘b + \/%;x) ¢ CC'FLCI) equals

K,0,m

lim inf B ms, mra,5%) [ ¢ FLC[(Bn, A, /nd, 0 + x, E*)] )

n—ao0

From Proposition 4.2, it thus suffices to show

iminf B /zs, mra, E*)[ CFLCI(ﬁn,A vnd, 9“b—|—aj,2*)] >

n—a0

liminf B¢ s, aras) [ g(ﬁAn,A, vnd, 0" + x, E*)] )

n—0o0

Note that the second stage of the test ¥ 7““! is nearly identical to 1§ except it uses

lo . . up 3 lo up :
V8 pror = max{v® v o} and v, o = min{v"? v ;) instead of v!° and v*P. Since
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Fy . ¢efvio wury () is decreasing in v and v, it suffices to show that v}, = P —o0, where P,
denotes the sequence of distributions under which (6,7, %) = (y/nda, /n7a, Z*).

Let A, = {6 : Aé < /nd}. Let v, = v,(A,,X*) and v, = v,(A,3,). Define a, and
an, and X, and Yy, analogously. By Lemma C.3, v, = 0, a, = \/Nlpn, Xn = \/NXn, and
b(a,v; A,) = /nb(a,v,A). We argued in the proof to Lemma C.23 that @, — ©. Further,
we showed in the proof to Lemma C.22 that v = —4A, where 4_g = 0 and 7p is the unique
vector such that ”ngfl(B,l) =1, %3;1(37,1) = 0. Likewise, we argued in the proof to Lemma
(.23 that @, — a, for @ the unique value such that b(a@, v; A) = b, (A). We also showed in
the proof to Proposition 3.2 that X, — bmin(A).

Let ©,, be a vector such that ©/,A = v' (which exists by Lemma B.1). Observe that

U Ny =0 ANFA'Y - TNFAY = - AN Ay = —7'%7,

where we use 9/,A = vy, v, — v = —7'A as shown above, and the identity Y= AN*A.
Now, Lemma C.27 implies that there is a constant ¢ > 0 such that, with probability ap-
proaching one under P,, ¢-7 is an optimal vertex of the dual problem for z/;c FLCT (ﬁn, A y/nd, 0%+

l
E
x,%*). Observe from Lemma B.2 that if -, is an optimal vertex, and 27* < 0, then the
/7* 7*
value of v} ¢y used in S TE(3,, A, \/nd, O + 2, %*) is
~ > ~
R e L
Vrrcr = o = c o T Vedns (23)
IRV U e/ Ve XV

where Y, = AB, — v/nd — 121(.,1)(9;‘{’ + x). Since ¢ is optimal in the dual with probability

approaching one under P,, and .
»Meoy 1
W=, Z < (24)
CQ,}//E,}/ C

by the argument above, we have that with probability approaching 1 under P,,

0 Y, — dy, .
o,y — LU w) | 7 (25)
v ey /cy'Ey
Now, we showed in the proof to Lemma C.8 that E( ms,  ur. %) [Y/,MB] = —121(371)37
regardless of n, where Y, = Y, — Ay (y/nF®) for a vector 7. Since 7_p = 0 and

”‘ngfl(B,_l) = 0, it follows that E( /s, mra,5%) Y, | = —”_yBA(B,l)x regardless of n. Thus,
Y, BN (—cﬁ%fl(al)x, 0275}?) . (26)
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Now, note that by construction, Y, — dp.1 = a, + vl B — (0" + x) — x,. Further, we
have that 3, & N (y/nBa, £*), where 84 = 04 + 74. It follows that under P, oY, — d,1 =
an + Vo A/MBa — (0% + x) — xp + V&, where € ~ N (0, X*). Applying the equalities v, = 1,,
a = /Ny, Xn = /nX derived above, along with the fact that §“* = \/nf* by Lemma C.1,

we see that under P,,

T Yo — di = /n (G + 0,84 — 01" = X0) — 2 + U, (27)
Since v/, — v, it follows that 0/,& —4 v'¢ by Slutsky’s lemma.

Additionally, the results above imply that d, + o, 84 — 0% —X,, — @+0'Ba — 0% —bin(A).
We claim that this limit is strictly negative. Since Assumption 4 holds, Lemma C.25 implies
that LID(A,d4) > 0. Hence, for € > 0 sufficiently small, we have that %* —e € S(A, B4). If
the limit above were weakly positive, then we would have @+ v'84 — (6% — €) — byin(A) > 0.
However, this implies that b(@, ?) > bpin(A), which is a contradiction. The limit must thus

be strictly negative, as desired. We then see from (27) that
Y (0" + ) — dpy 53, —c0. (28)

Displays (24), (25), (26), and (28) together give that v, ~; ﬂp —o0, as desired.

C.2 Auxiliary Lemmas for Finite Sample Normal Results

Lemma C.1 (Scale Invariance of Identified Set). For any n > 0, let A, = {§ : AJ <
vndy. Fiz 04 € Ay and 74. Then, S(y/noa + /n7a,An) = /nS(0a + 7a,A1). This
implies 0U0 = \/nBy®, where 0“0 := sup, S(v/nda + /n7a, A,), and 0 = \/nd¥, for 6% =
infy S(v/nda + /n7a, A,,)

Proof. Let S, = S(\/nda + /n7a,Ay) and 4 = 54 + 74. By definition, 0, € S, iff there
exists a vector Tp,s € RT such that I’ Tpost = On and A(\/NBa — MiposiTpost — v/1d) < 0. Using
the change of basis described in Section 4.1, it follows that 8, € S,, iff there exists 7, € RT-1
such that

AvnBa —/nd — A 1y0, — A1y, < 0. (29)

Thus, 6; € S; iff there exists 7; such that
ABa—d— A b — A7 <O0. (30)
If there exists a 7; such that (30) holds for #;, then multiplying both sides of (30) by \/n
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implies that (29) holds with ,, = \/nf; and 7, = \/n7. Likewise, if there exists a 7, such
that (29) holds for ,,, then multiplying both sides of (29) by - —= implies that (30) holds with

0, = \/iﬁén and 7 = \/iﬁ%n. The desired result follows immediately.
O

Lemma C.2 (Scale Invariance of Conditional Test). For any n > 0 and (B;A,d, 6,%),
US(8; A, d,0,%) = ¥ (vnB; A, y/nd, \/nf, nY).

Proof. Using the change of basis described in Section 4.1, the test statistic used to calculate
V(5 A, d,0,5) is

minn s.t AB—d— /I(.,l)e — AT < 1o,

T]?T

where & is the vector containing the square roots of the diagonal elements of ¥ = AXA'.
Since multiplying the constraints by y/n does not change the feasible set, this optimization

is equivalent to

minn s.t. A\/ﬁB—\/ﬁd—A f@ A —nyV/nT < ny/na.
n,T

However, since 7 enters only in the constraint, and {/n7 : 7 € RT"'} = {# € RT~'}, this

linear program is equivalent to

miny s.t Av/nf —+/nd — A y/nf — A7 < nné,
n,T

which is the test statistic used to calculate wg(\/ﬁﬁ, A, \/nd, /nf,nY). Thus, the test statis-
tics used for the two problems are the same. Additionally, the feasible set for the dual for the
unscaled problem is F} = {7 : ’y’fl(.,_l) = 0,76 = 1,7 = 0}, whereas for the problem scaled
by v/nitis F, = {y : vA._1) = 0,7/v/né = 1,7 = 0} = \/iﬁFl. It follows that V, = \%Vl,
for Vi and V,, respectively the vertices of F7 and F,,. Moreover, it is immediate that if v is
an optimal vertex of the unscaled problem, then ~,, = \/Lﬁ’yl will be an optimal vertex of the
problem scaled by 4/n.

Recall that the critical value for the conditional test depends on 7;27*7 where v, is an
optimal vertex, and the values v'° and v which are functions of v,, ¥, and a sufficient
statistic S. However, for v, = \/—ﬁ’yl, we have that +/, (n¥)y, = \/—ﬁvl(nZ)\/—ﬁfyl — /Yy, and
so the variances are the same. Let Y} = AB—d— A 0 and Y, = Ay/nfB—/nd—A1)y/nbd =
\/nY:. The sufficient statistic used to construct v'* and v* in the first problem is Sy = (I —
27—1%)371, whereas for the second problem it is S,, = (I — "EV"V" )Y The identities Y, = y/nY;

7EN
and v, = /n7, immediately imply that S, = \/nS;. The Values v and v"P for the first
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problem are then the minimum and maximum of C; = {¢ : ¢ = maxs,ey, Y1 (51 + 7227; c)}.

Likewise, the values v and v*? for the second problem are the the minimum and maximum

nE’Yn ¢)}, However, since V,, = y/nVi, S, = 4/nSi, and

of C,, = {¢ : ¢ = maxs,ev, 7,(S, + e

Yo = \/LE%, we have that for any c,

by )y n
max 7; (S1 + /:h c) = mavan(—s + v ) o

evy NEN eV VT Sy, T el VnnEYn

from which it is immediate that C; = C,, and hence the values of v’ and v"P are the
same across the two problems as well. Since the test statistics and critical values of the two

problems are the same, they are equivalent. O

Lemma C.3 (Scale Invariance for FLCIs). Let v,(A,%,,) be the vector v, used in the optimal
FLCI as defined in Section 3, making the dependence on (A, %,,) explicit. Define, xn(A,%,),
an(A,%,), and b,(A,Y,,) analogously. Let ¥, = %E* and A, = \/nA. Then

1 vp(An, TF) = 0a(A, 15,)

2. (D, $F) = yian (A, 15,)

3. Xa(Bns £¥) = Vitxa(A, 15,)

. 5(an(Dn, B, 00 (A, D); Ay) = /1b(an(A, Sn), va(A, D); A).

Proof. We show in the proof to Lemma C.19 that b(a,v;A,) is finite only if vy = [, in
which case b(a,v; A) = maxsea |a + v'8|. Likewise, b(y/na,v; A,) is finite only if v, = [, in

which case
b(v/na,v; A) = nax lVna +v'8,| = I(IslaAX\\/ﬁa +v'\/né| = v/nb(a,v,A).
n€0n €

Next, observe that using the invariance above and ,, = %Z*,
b(\/na,v: A\,
x(Vna,v; ¥ A,) = V'S - cu, <(\ﬁ/—;‘7)

NN (WA)) — V(v A).

It is then immediate that if (a*,v*) = argmin, ) x(a,v; A, ), then (y/na*, v*) = argmin,
x(a,v; Ay, %), from which the first two results follow. The second two results then follow

from the two invariances derived above. O
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Lemma C.4 (Scale Invariance for FLCI Hybrid). For any n > 0 and (B, A,d,0,%),

CIEON(B; A,d,0,%) = YS (VB A, v/nd, /nf, nY).

e R,o

Proof. From Lemma C.3, if CELCI(B; A,d,0,%) =a —H}iﬁAixl, then CSLCI(\/HB; A, \/nd, \/nf, \/nX) =
N (a1 B+ Xl) . Thus, 8 € CFECT(3; A, d, 8, %) iff \/nlfl € CFLOI(\/nf; A, \/nd, \/nf, \/AS),

so the first stage tests are equivalent. The second stage test is almost identical to ¢, which

is invariant to scale by Lemma C.2, except it replaces v with max{v'’, v, -} and v*? with

min{v"?, vy -, }. It thus suffices to show that v¢, ., and v}, ,; are invariant to scale. We

show in the proof to Lemma C.2 that S, = 4/nS;, and if 7, € V., then T = /MY € Vn;

where objects subscripted by 1 indicate values based on (B : A, d,0,%) and values subscripted

by n indicate those based on (\/ﬁB, A, \/nd, /nf,/nY). Additionally, Lemma C.3 implies

that f/l = Vn, and d,, = \/ﬁc?n. The desired invariance is then immediate from the formulas

in Lemma B.2. O

Lemma C.5. Suppose B ~ N (B8, %) for ¥ known. Let By be a closed, convex set. Then
the most-powerful size « test of Hy : B € By against the point alternative Hy @ = [Ba
is equivalent to the most powerful test of Hy : 8 = B against Hy : B = Ba, where f =
argming || — Balls and || - ||s is the Mahalanobis norm in ¥, ||z|[s = Va'Slz. The most
powerful test rejects for values of (ﬁA—B)/E_lg greater than (BA—5)/2_1ﬁ~+21_a||ﬁA—B||g,
and has power against the alternative of ®(||Ba — Bl|s — z1-a), for z1_a the 1 — a quantile

of the standard normal.

Proof. Define < -,- >y, by < 2,y >x= 2’Y "y, and observe that < -, - >y, is an inner product.
The result then follows immediately from the discussion in Section 2.4.3 of Ingster and Suslina

(2003), replacing all instances of the usual euclidean inner product with < -, - >y. O]

Lemma C.6 (Scale Invariance of Optimal Test). Suppose A = {§ : Ad < d}. As in the
proof to Proposition 4.2, let wé\fp(@; A,d,0,%,64,74) be an indicator for whether the most
powerful (Neyman-Pearson) test between the null hypothesis Hy : 6 € A0 = 0 and the
alternative Ha : (0, 7) = (04, 7a) rejects the null, given the realization B which is assumed to

come from a normal distribution with variance . Then for any n > 0,

w(])\;[P(B? A7 d7 9_7 27 6147 TA) = w;]y\/lp<\/ﬁﬁ7 A7 \/ﬁda \/ﬁe_v nE; \/55147 \/ETA)

Proof. As argued in the proof to Proposition 4.2, the null Hy : § € A, 0 = 0 is equivalent to
the null Hy : 3 € By(#,d) := {B : ITpost St U'Tpost = 0,AB —d— AM postTpost < 0}. Likewise,
the alternative that (J,7) = (04, 74) is equivalent to Hy : 5 = 04+ 74 =: Ba. It is clear from

the definition that By is convex. Thus, by Lemma C.5, the most powerful test of H, against
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H 4 when the covariance ofB is X is a t-test that rejects for large values of (G4 — Bl)'ZflﬂA,
where 3, = arg MiNgep, g.a) |64 — Bl Tts critical value is (84 — BYS1By + z1-0|18a — Bz,
for z;_, the 1 — a quantile of the standard normal distribution.

Similarly, the null hypothesis § € {§ : A5 < /nd},0 = \/nf is equivalent to Hy : 3 €
Bo(v/n, v/nd) = {B : ITpest St UTpost = /10, AB — \/nd — AMposiTpost < 0}. Likewise, the
alternative that (0,7) = (y/nda,/n7a) is equivalent to Hy : f = \/nda + /nta = \/nfa. It
is clear from the definition that By(y/n,/nd) is convex. Thus, by Lemma C.5, the most
powerful test of Hy against H, when the covariance of B is nY is a t-test that rejects for
large values of (v/nf84 — () (nX) ™3, where 5, = arg MiN gep, (nd, md) V1B — Bllnsy. Tts
critical value is (v/nfa — B2) (nX) o + 21-al|Ba — BgH(ng).

Now, define

n(3,A,d,0,%) := minn s.t. Af—d— fl(.,l)é — 121(.,_1)7* < no, (31)
n,T

where & is the square root of the diagonal elements of AXA’. It follows immediately from

the definition of By and the function n that we can write

Bo(0,d) ={B : n(B,A,d,0,%) <0}
Bo(v/nd, \/nd) = {8 : n(B, A,v/nd, /b, n¥)) < 0}

As argued in the proof to Lemma C.2 above, for any n > 0, n(8, A,d, 0, %) = n(v/nB, A, /nd, /nf,n%),
from which it follows that \/nBy(0, d) = By(y/nb, \/nd). Thus,

By = v/nargmin |[v/nBa — vnpB||ms)

ﬂEBQ(é,d)
= nargmin||84 — Bl|s = Vnpi,

BeBo(0,d)

where the second equality uses the fact that ||\/nz||ns) = ||z|ls. Thus, the test statistic

used for MP (\/nfB; A, \/nd, /b, \/nds, /nT4) is
(VnBa — B2) (nS) " (Vi) = (VnfBa — vnp1) (nS) " (Vnf) = (Ba — B1)S B,

which is the test statistic used for v M7 (5; A, d, 0,54, 74).
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Likewise, the critical value used for M7 (\/nB3; A, \/nd, /nl, \/nd 4, \/n7a) is

(VnBa — B2) (nE) ™' Ba + 21-al V1B — Bol|(nx) =
(VnBa — V) (nE) ™ Vnbi + z1i-alVnBa — VBl nxy =
(Ba — BI)IE_IBI + 210|184 — BlHEa

which is the critical value used for wé\fp(ﬁ; A,d,0,64,74). We have thus shown that the test
statistics and critical values for the two tests align, which gives the desired result.

]

Lemma C.7 (Rank of binding moments). Suppose Assumption / holds. Let 0"° := supy S(A, 64+
74) and Ba = 04 + Ta. Then there exists a vector 7*° € RT-1 such that for B = B(0**) as

defined in Assumption 4,

ApyBa—dp — Ap 0™ — A7 =0
A(—B,~)6A — d_B — A(_B,l)ew — A(_BJ)%M) = —€e< 0,

for € a vector with strictly positive entries. Additionally, the matriz A g _1) has rank equal
(B,-1)

to |B| =1, and {vp : YgAB,-1) = 0} = {c¢yp : c€ R} for a non-zero vector yp = 0.

Proof. From (7), we have that 60" = I3 post — "0}, for 6** a solution to

main Udpost St Ad < d, dpre = 04 pre- (32)
Let B = B(6**) index the binding inequalities of the optimization above at 6**, so that

Ap0** —dp = 0 (33)
A(,B,.)(S** — d_B = —e <0. (34)

By Assumption 4, A(p post) has rank |B].

Now, let 7% = (04post + TApost) — Opast- Since by construction 0% € Sp(A, Ba), we have

*%

5pre _ 5A,pre _ 5
DS O A post + .
post T A,post TA post

A-19



It follows that

AS** = ABy — AMppqym**
= AB4 — AMput DT
= AB4 — A(.71)(l/7'**> — 121(.7_1)11(_17.)7**
= ABa — AL 1y(0") — A7,

where the third equality uses the definition of A and the fact that the first row of T'is I’; and

the fourth equality uses the fact that 0“° = I"((64post + Tapost) — Ors) = I'T** and defines

70 := —I'(_1y7**. The first result then follows immediately from the previous display along

with (33) and (34).

To show the second set of results, note that fl( By = A B,post)f"l. Since A(p post) has rank
|B| by assumption and I'~! is full rank, A3y also has rank |B|. This implies that Az i
has rank of either |B| — 1 or |B|. To show that the rank must be |B| — 1, note that the

optimization (32) can be re-written as

%ﬂiltl l’5p05t s.t. A(~,post)6post <d-— A(~,pre)5A,pre- (35)
pos

Since the optimization is assumed to have a finite solution, it is equivalent to its dual for-
mulation,

mex V(A prey0apre —d) st. = Ap posty = 1,7 = 0.

Let ¥ be a solution to the dual problem. Since ¥ is feasible in the dual, —y'A(. ,0s) =
I and 4 > 0. Additionally, by the complementary slackness conditions, it must be that
J-p = 0. Hence, we have —7;A(p posty = I'. Multiplying on the right by I'"!, we obtain
—f‘y}gfl(B,.) = I'T'. Recall that by construction the first row of I is I, so I’ = €I, and thus
—'73921(37.) = ['T~! = ¢|. This shows, however, that 75 is in the nullspace of A,(B,q) but
not in the null space of A’(B7.). It follows that the rank of Ap _y) is strictly less than that
of Ap,, and thus must be equal to |B| — 1. Since A(p _1) has |B| rows and rank |B| — 1,
by the rank nullity theorem the set {yp : ”ygfl( B,—1) = 0} must be one dimensional. We've
shown that 71’921(3,,1) = 0, and 4 # 0 since YgABpost)y = —!' # 0, which implies that

{vB : V8A®B,—1) = 0} = {cYB : c€ R}, as needed.
[

Lemma C.8 (Limiting power of conditional test). Let A = {§ : AJ < d}, and fix §4 € A,
Ta, and X* positive definite. If Assumption 4 holds, then for any x > 0,
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E(\/ﬁ(;A,\/ﬁTA,E*) [wg(ﬁm Aa \/ﬁd, ezb + x, Z*)] e @(Zl,a — C*JI),

where 0% = supS(A,,\/nda + /n7a), A, = {6 : Ad < /nd}, and c¢* is a positive
constant (not depending on x or «). In particular, ¢* = —3yAp1/op, where op =

\/ﬁgA(B7.)E*A’(B VB and g is the unique vector such that ”ngfl( -1 =0,7 = 0,||¥8] = 1.

Proof. From Lemma C.7, there exists a vector 7 and a set of indices B such that

ApoBa—ds = Apnbi’ — Ap 7" =0 (36)
AcpyBa—dp—A g0 — Ap _nft = —e <0, (37)
and the set {yz € RIBI : fijA(B,,l) = 0} = {cyg : ¢ € R} for some non-zero vector
5 = 0, which without loss of generality we can normalize so that ||yp|| = 1. Let & be the

vector containing the square roots of the diagonal elements of AY*A’. It follows that the set
{1B € RIZI
is 75 = (057B)

strictly positive element, and ¢ > 0 since by assumption A has no all-zero rows and X* is

: fngfl(Bﬁl) =0,7v305 = 1,7 = 0} is a singleton. In particular, its lone element

~14p. Note that (6%75)"" is well-defined since v > 0 and has at least one

positive definite.
Now, consider @/Jg(,@n, Ay, v/ndp, 0% + x,5*), the conditional test that uses only the

moments in B. The test statistic for the conditional test that uses only the moments in B is

77(371, A(B,-), \/ﬁdB, ezb + z, E*) minn

17’
s.t. A(B \FdB — B 1) (QUb + 33’) A(B,fl)% < U&B

The equivalent dual problem is
f%aX’YJ/B?B,n st. VA1) = 0,765 = 1,75 > 0,
B

where ?B,n = Ay Bn — Vndp — A ) (00 + x). We have shown, however, that there is a
single value, 75, that satisfies the constraints of the dual problem, and so the solution to
the problem in the previous display is v} YBn Additionally, since the set of dual vertices

lo— _o0 and v =

is a singleton, the conditioning event that % is optimal is trivial, so v
oo. It follows that the conditional test using only the moments B is a one-sided t-test
that rejects for large values of v} YBn Specifically, the critical value is z1_,0%, for o} =
\/’yE’A )2* A Y5 the standard deviation of the test statistic 7} YBn We claim that

op > 0. To see Why this is the case, observe that Assumption 4 implies that Ay has full
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row rank, and by construction v # 0, so Y5 A, # 0. That o > 0 then follows from the
fact that >* is positive definite.
Additionally, observe that

B ymsamrane) [VE’YB,n} =g [A<B,.>\/ﬁﬁA — Vndp — A (00 + x)]
= V5V [ AwBa — di — At | -5 Amaa

= VA — v AT = —VE AmT

where the second equality uses 0% = /nf* from Lemma C.1, the third equality uses (36)
to substitute for the term in brackets, and the final equality follows from the fact that

YEAB,—1) = 0 by construction. Thus, regardless of n, the conditional test using only the

moments in B rejects with probability

E(\/ﬁ‘SA,\/ﬁTA:E*) [1/}5(Bn7 A(Bw)7 Vndp, 931) +, E*)] =1-P(21-0— (—’YE/A(BJ)/UE) ). (38)

Note also that we showed in the proof of Lemma C.7 that —y5 Ay = €}, which implies

that —7}/}321(3,1) = 1, and hence ¢* := —yg’fl(m)/ag > ( since 7} is a positive multiple of

)

~p. Moreover, observe that if we define op = \/W}BA(R.)Z*A'(B \ VB, then 45 /0% = vB/op,
so c* = —7%[1(3,1)/03.

Recall that ¢S (8,; A, v/nd, 02 +x,5*) = (Y, AS*A") for Y, = AB,—/nd— A1) (0 +
x). Since the conditional test optimizes over 7, and 7 appears in this optimization only in
the term [1(.7_1)%, the result of the conditional test using Y, is equivalent to the result of the
conditional test that replaces Y, with ¥, =Y, — A( 1y (y/nF®) (see Lemma 16 in ARP for
a formal justification). That is, wg(}}n,AZ*A’) = ¢g(}7n,AZ*A’). The expectation of the

elements of Y, corresponding with the rows B is

(/76 4, /Aira,5%) [an,B] = A yvnBa —Vndp — A1y (02 + x) — A1) (Vni®)

= \/ﬁ (A(B,-)BA — dB — A(BJ)eqlJb — A(B7_1)7’:{Lb) - A(B,l)x

= —Ansnz,

where the second line uses the fact that % = \/nf* from Lemma C.1, and the third uses
(36). Similarly, the expectation of the elements of Y, corresponding to the rows other than
B is
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Y

(764, /7ira,5%) [Yn,fB] = A_pyvnBa —vnd_g — A_p (0™ + 2) — A_p1y(v/nF?)
=/n (A(—B,.)ﬁA —d_p—A_p0 — A(_B,n%fb) —~A_pyr

= Vn(—€) — A_pz,

where the last line uses (37). Since —e < 0, all of the elements of E [ffn, B] converge to —o0

as n — o0, whereas E [}an B] does not depend on n. It follows from Proposition 3 in ARP
that the conditional test based on the full set of moments is equal to the conditional test

that only uses the moments B with probability approaching one,

Tim s, yiimasn) (V5 (Bus A, vnd, 020 + 2, 57) = ¥ (B, Ay, v/nds, 030 + 2,57)) = 1.
This, combined with (38), gives the desired result. [

Lemma C.9. Let B be a closed, convex subset of RX | and B4 ¢ B. Let § = arg mings ||6 —

Balls, where ||z||3 = 'Sz for some positive definite matriz Y. Then for any 3 € B,

(8= Ba)S7H(B = 5) = 0.

Proof. Consider any (3 € B. Define 5 = 0(8 — B) + A, and note that since B is convex S5 € B
for any 6 € [0, 1]. Further,

186 = Balls, = 02118 = BIIE, +20(8 — Ba)Z71(B = B) + 18 — Ballz.

Differentiating with respect to 8, we have
0 ~ - e -
P Balls = 20|16 — 55 +2(6 — Ba)S7H(B — B),

from which we see that the derivative evaluated at § = 0 is 2(8 — 84)'S (84 — 3). Since 3
minimizes the norm, it follows that we must have 2(3 — 34)'S 7' (84 — ) = 0, else we could
achieve a lower value of the norm at Sy by choosing # sufficiently small. O]
Lemma C.10. Let B = {f € RE : /3 < d} for some v € RE\{0} and d € R. Let
B = arg ming.g || — Ballz for some B4 ¢ B, where ||z]|3, = 2'S7 @ and X is positive definite.

Then (Sa — B)’Z_l = c- v for the positive constant ¢ = ”/ﬁvﬁ.

Proof. Note that we can form a basis v, Us, ..., 0 such that v'0; = 0 for j = 2,..., K. It

follows by construction that for any j = 2,.., K and any t € R, B +t-9; € B. Hence, from
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Lemma C.9, —(84 — 8)'S7!(tv;) = 0. Since we can choose t both positive and negative, it

follows that (84— )'S7'0; = 0 for all j. Since (84— )'S! is orthogonal to {os, ..., Uk }, and

{v,Dq, ..., 0k} form a basis, we have that (f4 — B)’Z_l = ¢ -/, for some ¢ € R. Multiplying
both sides of the equation on the right by ¥v, we obtain that (54 — B)’v = c¢-v'Yv. However,
since 3 is the closest point to 34 in Mahalanobis distance, it must be on the boundary of B,
and so v/ = d. Tt follows that ¢ = (v'Ba —d)/(v'Ev), which is clearly positive since 4 ¢ B

and thus v/84 > d. O

Lemma C.11 (Power of optimal test for linear subspace). Let B = {8 € RE : v'3 < d}
for some v e RE\{0} and d € R. Suppose B~ N (B, X) for X positive definite known, and
consider the problem of testing Hy : B € B against Ha : 8 = [a for some Ba ¢ B. Then the

most powerful size-a test of Hy against H 4 is a one-sided t-test that rejects for large values
of V'3, and has power equal to ®((v'Ba — d)/VU'Sv — 21_4).

Proof. From Lemma C.5, the most powerful test rejects for large values of (54 — B)’ »13,

where 3 = argming.g |[3 — Balls, and has power ®(|[84 — Bl — #1-a). By Lemma C.10,

(Ba—B)E™t =/, for c = (Vs —d)/(v'Sv). Tt follows that

184 — Bl = (Ba — BT (Ba — B)
= cv'(Ba— B)
= c(v'Ba —d) = (V'Ba — d)*/(v'Sv),

where we use the fact that v’ B = d, since B must be on the boundary of B, as argued in the

proof to Lemma C.10. The result then follows immediately. O]

Lemma C.12 (Asymptotic Power Envelope). Let A = {§ : Ad < d}, and fixr 04 € A, Ta,
and X* positive definite. If Assumption /4 holds, then for any x > 0,

E(\/E5A7\/ETA,Z*) I:w(])t/[P(Bna A, \/ﬁd, sz + x, E*)] —-1- (I)(Zl,a — C*SC),

where YMT is as defined in the proof to Proposition /.2, 0%° := sup S(An,/nds + /n7a),
A, ={0 : Ad < +/nd}, and ¢* is the same positive constant as in Lemma C.8.

Proof. As argued in the proof to Lemma C.6, the null hypothesis Hy : 0 = 0,0 € {Ad < d} is
equivalent to the null Hy : 8 € By(0,d) = {B : ITpost 8-t U'Tpost = 0, AB—d—AM o5t Tpost < 0},
which we showed in Lemma C.6 to be equivalent to By(6,d) = {3 : n(B,4,d,0,5*) < 0}
for the function 1 as defined in (31). Thus, the null hypothesis for the test associated with
YMP(B: A \/nd, 0% + 2, 5*) can be written as Hy : S, € Buo := {8 : n(3, A, /nd, 0" +
x,%*) < 0}. Under the alternative for this test, 8, = \/nfa, so by Lemma C.5 the most
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powerful test uses the test statistic (v/n84 — 3,)'S* 1 B,, where 8, = arg ming.p  [|8 —

VnBal|ss

Now, from Lemma C.7, there exists a vector 7 b and a set of indices B such that

A(B,-)BA - dB - A(B,l)QUb - A(B 1 ~Ub = O (39)
7B,~)6A_d—B_A( 319 —A b=—€<0, (40)

where {yp e RI®l : v Ap 1) =0} = {¢yp : c € R} for some non-zero vector 75 = 0. Define
BE = {8 : n(B, Ay, v/ndp, 02" + x,5*) < 0}, the analog to B, that restricts attention
only to the set of moments B. By an argument analogous to that in the proof to Lemma
C.8 (replacing }A/ with p), we can show that (8, Ap,.),v/nd, 0% + 2,5*) = v¥pp.(6),
where pipn(8) = A8 — \de — Aip (62 + ) and v = (¥30) '45. Note also that
(39) implies that A(371)01 ByBa —dp — A (B, 1)T“b. Substituting into the expression
for pp,.(B) and using the fact that 0 = \/nf* by Lemma C.1, we obtain up,(8) =

B (B — V/nBa) — Aayr + fA(B T 7ub  Since ’yg’fl(B,_l) = 0 by construction, this
1mphes that Y5 up.(8) = 75 (A, (8 — vVnba) — 121(371)&7). Hence,

BY ={p : n(B, As,), vVnd, 0" + 2, %*) < 0}
= {8 : 75 (A, (B —Vnpa) — A(B,l)x) < 0}
= {8 : (A (B — (Vn—1)Ba) — Ba) — Ayz) < 0}
= {8 (B—(Wn—1)Ba) e B} = (vVn— 1) + BY.

Now, define 8 = arg mingepgs [|3 — /nBal|s+. The results above imply that
By = argmin|[|8 — v/nfa s«

peBg

= argmin |8 — v/nfalls

Be(v/n—1)Bs+BE
= (v/n —1)B4 + arg min || ﬂ + (v/n —1)B4 — /nBal|sx
,BEB N ~
=(8—Ba)

= (Wn—=1)Ba+ 57

Observe that B2 2 B, o since BY is the set of values 3 that are consistent with a subset of the
moments used in B, (formally, n(8, As,), vVndgd2® +x,5*) < n(8, A, v/ndd* + z, *) since
the RHS minimizes the same objective function subject to additional constraints). Thus,

B = B, iff Bk € B,o. From the definition of B,, o, this occurs iff there exists a value 7,, such
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that

Ay Bi—y/ndp — Ay (02 +2) — Ap_1yF, <0
Acp By — Vnd_p — A(_BJ)\/E(QZZ) +z) — 121(37_1) Tn < 0

Now, since 3 € BE, there exists a value 7' such that

ApaBt —dp — A0 + 2) — A7 <0.

It follows that

A Br —nds — Ay (020 + 2) — Ay (7 + (Vn— 1))

= A B —dp — Ay (07 +2) — Ay + (Vn—1) [A<B,->5A —dp — At — Ap,-1

= A Bf —dp — Ay (0 + 2) — A7 <0,

where the first equality uses the fact that %° = /nf* by Lemma C.1 and 8F = 8§ + (v/n —
1)B4 as shown above, and the second equality uses (39).

Similarly, we have

A pyBi—nd_p— A gV +x) — Ap_1y(Ff + (Vn — 1)F®) =
= ApBt —d_p— Ay (0" + 2) — A_pyyTi+

(vn—1) [A(—B,.)BA —d_p— A0 — A(—B,nﬂ"b]
= [A(—B,)Bik — d_B - A(_BJ) (Qi‘b + I) - A(—B,l)%l*:l - (\/ﬁ — 1)67

for € a vector with strictly positive elements, where the first equality again uses that 0 =
Vb and BF = BF + (y/n — 1)B4, and the second equality uses (40). Since the term
in brackets in the final expression in the previous display does not depend on n and all
elements of the final term go to —oo, for n sufficiently large the expression in the previous
display will be less than or equal to 0. Thus, for n sufficiently large, 8} = $,, and hence the
MP test of Hy : B € B, against Hy : = \/nf4 is equivalent to the most powerful test of
Hy : B € BB against Hy : 8 = \/nBa.

We showed earlier in the proof that B2 = {3 : v/8 < d,}, for v = v}/ A(p,) and d,, =
’}/E/A(B’l)l' +v'y/nB4. From Lemma C.11, the MP test of Hy : 3 € B? against Hy : 8 = Ba
has power equal to ®((v'\/nBa — d,,)/(v'E*v) — 21_,). Plugging in the definitions of v and d

and cancelling like terms, we obtain that the power of the test is ®(—v¥ A 17/0k — 21-a),

for o}, = A XAl (75, which coincides with the expression for the limiting power
B TB4A(B,) (B,) /B
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of the conditional test in Lemma C.8, as needed. O

Lemma C.13 (Lower bound for ). Let n(8, A,d,0,%) be as defined in (31). Fiz X* positive
definite. For any 64, 7a, and d, let Ba(0a,7a) = Sa+Ta and 0°(64,74,d) = supS(A,54+74)
for A=1{0 : A < d}. Let n*(x;04,7a,d) := n(Ba(04,74), A, d,0%(64, T4, d) + x,5*%). Then
there exists a scalar ¢(X*, A) > 0 such that n*(x;04,7a,d) = (X%, A) - x for all 64,74, and
d.

Proof. Observe that 1(84, A, d, 0, ) is equivalent to the linear program

minn s.t. Afay —d — At <né, 't = 0.
n,T

The dual formulation for this problem is

/
ABy—d
max ( A ) ( 5’4_ ) st Y4A+ vl =0, ¥4o =1, 74 =0,
Y Yo 0

where 74 is a vector with length equal to the number of rows of A, and 7, is a scalar. Note
that the feasible set for the dual depends on A and ¥* but not on d, 4, or 74. Let Vp denote
the set of vertices of the dual, which is finite, and recall that maximizing over the feasible
set is equivalent to maximizing over the set of vertices.

Now, we first claim that n(84, A,d, 0", ¥*) = 0. Note that since 0 is in the iden-
tified set, it must be that n(B8a, A,d, 0", %*) < 0. Towards contradiction, suppose that

n(Ba, A, d, 0% 3*) = —¢; < 0. Then for all v = ( A ) e Vp,
Yo

VA ABa—d < e
Yo v

Since Vp is finite, 9y := max,ey,, 7o is finite. But then for e; > 0,

!
ABy—d
A ﬁA < —€1 + Ypea.
Yo QUb + €9

By choosing €, sufficiently small, we can make the upper bound in the previous display less
than or equal to 0. However, this implies that n(84, A, d, 0“* + €5, ¥*) < 0. But this in turn
implies 6" + €, is in the identified set, which contradicts #*® being maximal. Therefore,
n(Ba, A,d, 0", X*) = 0.

Additionally, we claim that for § = #"*, there must be an optimal dual vertex with

v9 > 0. Towards contradiction, suppose not. Then there exists €3 > 0 such that for all
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!/
Afa—d
v = T € Vbt i={y€Vp : 7 > 0}, b ﬁAb < —e3. Letting ¢4 =
Vo Vo 0"

YA ABa—d

€3/ Max ey, . Yo, it follows that for all v € Vp 4, )
’ Yo 0" + €4

) < 0. Additionally,

for v = ( A ) e Vp\Vp 4+, we have 7y < 0, and so

e
YA ABa—d < YA ABa—d <o
Yo 0% + ¢4 Yo b

/

AP —d

Thus, (%4 ) ( iA ) < 0 for all v € Vp, and so (B4, A, d, 0% + ¢,,5%) < 0.
Yo 0" + €4

However, this implies that 6“* + ¢, is in the identified set, which contradicts 6“* being

maximal. Thus, there must be at least one v* € Vp | such that

n\ [ At-d _,
% 6 '

Since v* remains feasible in the dual with § = 6%+, it follows that n(84, A, d, 0**+z, %)

is lower bounded by
/
() ()
* ub =T L
Yo 0" + x

Note that the choice of v* € Vp  depended on d,d4, and 74. However, as noted earlier
in the proof, the set Vp  depends on A and X* but does not on d, 04, 74. Since Vp_, is finite
and 79 > 0 for all v € Vp 4, there is a value ¢ > 0 such that vy > ¢ for all v € Vp ;. Hence,

n*(x;04,Ta,d) = c-x for all 4,74, d, as needed. ]

Lemma C.14. Let o € (0,1) and ¢ > z,_,. Then there exists a unique constant ((c) > 0
such that

®(c) = (c = ¢(0)
1 —@(c—((c))
Additionally, for any values z, < zup, with 2z, and z,, potentially infinite-valued, and n >

max{c, z, + ((c)},

=1-a.

F£|§e[zlo,oo)(77) >1- a,
where F|¢cpso o () is the CDF of & ~ N (0, 1) truncated to [z, 2*7).

Proof. First, we show that Fg|ecp.to .up)(t) is increasing in ¢ and decreasing in zj, and z,,, and
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these comparative statics are strict for ¢ € (z,, zup). To see this, note that

0 for t < z,
D(t) — B(z)
Fereetzeam® =\ G "0 ()

1 for t > 2y,

for t € (210, 2up)

It is immediate that F¢|eep,to .ue)(t) is increasing in ¢ and decreasing in z,,, and strictly so

when ¢ € (2, 2yp). Additionally, we have

0 O(t) = P(z0) _ —¢(210) (P(2up) — D(F))
aZlo (I)(Zup) - (I)(Zlo) ((I)(Zup) — CI)(ZZODz ’

which is clearly negative for ¢ € (2, 24p), which gives the desired result for z,.

Next, consider the function
®(c) — P(c—C
flo = AL
1—®(c—()
Observe that f(0) = 0 and lim¢_,, f({) = ®(c) > 1 — a. Additionally, the derivative in the

previous paragraph (with z,, = c0) implies that diC f(¢) > 0 for ¢ > 0. It follows that there

is a unique value ((¢) > 0 such that

®(c) — (c—¢(¢)

fle.¢le) = —— ®(c—¢(c))

=1-aq,

which gives the first result.
Next, we claim that for zj, € (—00,00) and ¢ > 0, Fg|¢c[sto 00) (210 + () is increasing in z,.

To see why this is the case, note that

(I)(Zlo + C) — q)(Zlo)
1-— (I)(Zlo) ’

Fg\ge[zlo,oo)(zlo + g) =

Differentiating with respect to z;,, we obtain

¢ (210 + Q) (1 = P(210)) — P(210) (1 — (210 + ()
[1- (I)(ZIO)]2

)

which is greater than zero iff

¢(Zlo + C) = ¢(zlo)
1=z +C¢)  1—D(2)’

which holds since the normal hazard function is strictly increasing.
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Now, suppose that n > max{c, 2, + ((¢)}. Then

Fe|gefsto,zn) (1) = Fejeefztor) (1)
> Fe | eefzto0) (max{c, zio + ((c)})
= maX{F£|§e[zlo7oo) (C), F§|§e[zlo,oo) (Zlo + C(C))}, (41)

where the first inequality uses the fact that F¢|gef.10 .ur)(t) is decreasing in z,, and the second
inequality uses the fact that F|ec[.io .ury(t) is strictly increasing in ¢ when ¢ € (2, 0), and
that max{c, z;, + ((c¢)} > 2, since ((c¢) > 0. The final equality again uses the fact that
F | gepsto upy(t) is increasing in ¢.

However, if 2, < ¢ — ((c), then

Fe | gefzto,m)(€) = Fejeefe—co)0)(€) = 1 — o,
since we’ve shown that the expression on the left hand side is decreasing in z;,. On the other

hand, if z;, = ¢ — ((¢), then

Fe | gefto,00) (210 + €(€) = Fgefe—c(o)m) (€) = 1 — v,

since we've shown that Fy|ec[.i0,5)(210 + €) is increasing in z;,. We have thus shown that the

max on the right-hand side of (41) is at least 1 — «, which gives the desired result. O
Lemma C.15. For anyte R, St_oo ®(x)dz is finite. In particular, St_oo O(z)dr = tD(t)+o(t).

Proof. We have

J_too O(x)dx = J JOOOO ¢(s)ds dx

f f 1[s < = < £]6(s) ds dz
:L,o t— 5)1[s < t]o(s) ds
[ s <avds— [ als <o)

—00 —0a0

() — BOE[E € < t,€ ~ (0, 1)] = ta(t) — d(t) =)

where the last line uses the formula for the mean of a truncated normal distribution. Note
that we exchange the order of integration via Fubini’s theorem, which is valid since the

integrand is weakly positive everywhere and thus equal to its absolute value, and we’ve
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shown that the integral after switching the order is finite. O]

Lemma C.16 (Lower bound on conditional test power). Suppose Y (z) ~ N (/l(x), f)) for

some fi(x) such that max .y s v [(x) =z > 0, where V(X) is the set of vertices of the dual
feasible set, F' = {y : v = 0,7’141(.7_1) = 0,76 = 1}, and & contains the square root of the
diagonal elements of ¥. Then there exists a function g(w,f}), not depending on fi(z), such

that & [wg(f/(x), ZN])} > p(x,%) and lim, o, p(z,%) = 1.

Proof. Recall that ¢¢ is based on the solution to the dual problem, 7 = Max, v (s Y'Y
Specifically, 1/)5(17, 3) = 1iff

Fejeepots, o) (05 7:27:)) > 1 —

where v, is an optimal solution to the dual (v, € V), and v%, v are functions of 7., ¥, and
a sufficient statistic S, (Y) that by construction is independent of 4.Y". (In this proof only,
we make the dependence of v!° and v*’ on v, explicit in the notation.) If v,¥v, # 0, then
using the standard formula for the CDF of a truncated normal distribution, we have that

the conditional test rejects iff

O (i)/0y,) — P(27)

— >1—q, (42)
D(27) — ()

where 0., = 4/7. 37, and z,ly‘; = ﬁfyo*/av*, 24P = 0P /o, By Lemma C.14, for any ¢ > 2,
(42) holds whenever 7j/0,, > max{c, 2% + ((c)}, where ((c) is the unique value that solves

®(c) — (e —¢(¢))
1= ®(c—((c))

=1-oa.

Thus, when 0., # 0, ¥$ = 1 whenever 7/0.,, > max{c, z%‘; +((c)}, or equivalently, whenever

n > o.,cand 1/0,, — Z’lyi > ((c). Additionally, if o, = 0, then ¢ = 1 whenever 7 > 0.

Let & = max, .y (s 04, which is finite since V(%) is finite. Then the preceding discussion

implies that for any ¢ > max{z;_q,0}, ¥$ = 1 whenever
1) n > ac, AND
2) 3v, € V such that either i) 0., = 0, OR ii) 0, > 0 and .Y /o, — 20 > ((e),

where for the second part of condition 2) we use the fact that 7 = 7;17 when v, € V. Hence,
¢ = 0 only if either

A) /) < &c, OR
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B) 3y, € V such that 0, >0and V.Y /o, — 20 < ((c).

Now, by assumption there exists some 7 € V(%) such that 4'fi(x) > x. Since 7 is feasible
in the dual problem for 7, we see that # is lower bounded by 7'V, which is distributed
N (ﬁ’ i), 0%). Thus, the probability that condition A) holds is bounded above by the
probability that 'Y < Gc. If o5 = 0, then the probability condition A) holds is 0 so long

. -

as ¢ < £. If o5 > 0, then P(ﬁ’Y < 60) = o (w) If 05 > 0, then the set
75

VHE) :={ye V(X); 0, > 0} is non-empty. In this case, let ¢ = min,cy+ o, and note that

o > 0 since V7 is finite. Then

Ry _ _
q)(ac 7#($))<®<Uc x)g@(zc_g)’

where we use the fact that ®(-) is increasing, ¢ = 0 and 7'fi(z) = = > 0. Thus, if ¢ <
have that condition A) holds with probability bounded above by ® (gc — 2

5 .

ST
=
@)

Now, the probability that condition B) holds is equal to

P (37* eV st. o, >0and 7Y /o, — 2

P <37* eV st. o, >0 and

Y lo
VY [oy, — 2

PRI CACREEARICIE

v+EVT

P (3% eV* st

The equality above uses the fact that v, € 1% implies that ’y;f//aw* — zlv‘; > 0 since 1) = v'° by
construction; and the remaining inequalities follow from standard properties of probability.
Next, observe that 7, Y /o, is normally distributed with variance 1 for every v, € V*(%).
Additionally, the random variable zlﬁ is by construction independent of 7/ Y /o, . However,
for any variable £ that is normally distributed with variance 1 and any variable Z independent
of ,

Pezy (€= Z| <) =Bz [Pz (€z—C 2+ (]| Z = 2)]
<maxPe (¢ € [v— (v + () = () = (=0,
where the first equality follows from iterated expectations, the inequality uses the fact that
the distribution of ¢ is independent of Z, and the final equality uses the fact that the

normal distribution is single-peaked at its mean, so the maximal probability that a normal
distribution with variance 1 falls in an interval of length 2¢ is ®(¢) — ®(—(). Additionally,
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observe that ®({) — ®(—() = SEC p(t)dt < 2¢(0)¢. It follows that for any constant ¢ >
max{z1_q, 0}, the probability condition B) holds is bounded above by x((c), where we define
the constant k = 2|V *|4(0).

Since 1< = 0 only if either condition A) or condition B) holds, the probability that < = 0
is bounded above by ® (gc - %) + K((c), for any c € [max{z_4,0}, 2). Let c(x) = ¢o - x for

o

o = . Note that ¢(z) > max{z,_q,0} for > max{z,_,/cy,0} =: Znin. Note also that

<1 s0c(r) <32

g’

1
bounded above by ® (—2—_:E> + k((cox).
a

NN | =
SUISTeY]
Q\l»—tqwl I

co = x. For > i, we then have that the probability ¥ = 0 is

3 1 3
Define p(z,%) =1—® (—2—x> — k((cox) for & > xp, and p(x,3) = 0 otherwise. By
P e P

. . 1
construction, E [wg(Y, 2)] > p(z,X). Note that as © — oo, @ (—2—_1’) — 0. To complete
- o

the proof that p — 1, we show that x((c) — 0 as ¢ — 0. To show this, observe that for any
e > 0, by L’Hospitale’s rule,

i PO 0= _ L 60— (e o)
= 1 —®(c—e¢) o —p(c—¢€)
o)
e
=1- CILI?O exp <—%(2€€ — 62)) =1
O(c) = @(c=¢)

Additionally, as shown in the proof to Lemma C.14,

= ®(c—0) is increasing in (. It is

then immediate that limsup,_,, ((c) < € for all € > 0, and hence lim.,,, {(c) = 0.

[l
Lemma C.17 (Lower bound on hybrid power). Suppose Y (z) ~ N (ﬂ, i]) for some [i(x)

such that max oy sy V' fi(x) = x > 0, where V(X) is the set of vertices of the dual feasible
set, ' ={y : v>=0,7YA(_1) = 0,796 = 1}, and & contains the square root of the diagonal
elements of X2. Then there exists a function p(x,Y)), not depending on fi(z), such that
E [wg‘aFLCI(Y/(m), i)] > p(x, f]) and lim,_,o, p(z, XN]) =1.

Proof. The proof is nearly identical to that of Lemma C.16. In particular, by analogous
argument we can show that the test g;f LCT = ( only if A) ) < Gcg, or B) Iy, € V such that

0y, > 0 and 0 < 1LY /o, — 2C.rrorq, < C(ca), where 2@ ppoy, = UZC’O-FLCI,V*/ s AN Ca
®(ca) — ®(ca —C(ca))

1 —®(cs — ((ca))
then obtain upper bounds on the probability that conditions A) or B) hold by an analogous

solves = 1 — &. Noting that z¢ FLCI, 18 iIndependent of ALY, we can

argument to that in the proof to Lemma C.16. O
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Lemma C.18 (Lower bounds on power). Let A = {§ : AS < d}, and let 0*°(A, ) =
supS(A, B). Then there exists a function prp(-,-) such that for any 6 € A, T, ¥*, and
x>0,

Esrse) W(ﬁn; A,d, 0 (A 5+ 7) + z*)] > prs(z, =),

and for any ¥* fized, ppp(x, %) — 1 as v — 0. Analogously, there exists a function prg(-,-)
such that for any 6 € A, 7, ¥*, and x > 0,

E(5,r.5%) [ CFLOL(B A, d, 0" (A5 + 7) + 2, 5" )] > prp(z, 5%),

and for any ¥X* fized, prp(x,¥*) —> 1 as x — o0.

Proof. Lemma C.13 implies that there exists a scalar ¢(X*, A) > 0 such that

(X% A) -z <nf(x;0,7,5%) = ngi%nn s.t. i4ﬁ - (0" + :c) —A._nT <10,

I =
1:1<

where 8 = § + 7. Reformulating the minimization above in terms of its dual, we have that

c(E*, A) - v < max s V' fi, Where V(32*) is the set of vertices of F' = {’y’fl( 1y =0,76 =
0,7 = 0}. Next, recall that by definition, 1/}5(6, A,d, 0,5 = 1[)0( (B,A d,0), AL* A",
where ?(B,A, d,0) = AB—d— fl(.,_l)é. Observe that E ;- x+) [ (ﬁ,A,d, 0)] = fi. Lemma
C.16 then implies that there exists a function p(-,-) such that

E(57,5%) [1&5(3”, A, d, 9"b(A, 0+71)+x, E*)] > p(e(X*,A) -z, AX*A'),

and p(z, AX*A") — 1as & — 0. The first desired result then follows by defining prp(x, ¥*) :=

ple(X*,A) -2, AX*A"). The second desired result follows from an analogous argument, ap-
pealing to Lemma C.17 instead of Lemma C.16.
[l

Lemma C.19 (Bounds for worst-case bias). For any (a,v), b(a,v) > 1 SUDs, en e LID(A, dpre).

Proof. Since 8 = § + 7, we can write the bias of the affine estimator a + VB asb = a+
V' 4+ (Upost — 1) Tpost- Since T,ps is unrestricted in the maximization in (11), we see that the
worst-case bias will be infinite if v,,5 # [ and the lemma holds trivially. We can thus restrict
attention to affine estimators with v, = [, in which case the worst-case bias reduces to

b(a,v) = sup |a + v'8| = sup |a + v, Opre + U'Spost- (43)

Te
deA deA P

Now, pick any 9%, € Ap,.. First, suppose that the minimum (min5 Ubpost, s.t. 6 € A, dpre =

pre
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and the equivalent maximum (maX5 Ubpost, s.t. 6 € A, dpre = 5;6) are finite. Let ™" and

maxr 3 : : maxr _ Smin _ S*
0™ be the associated solutions. By construction, ;76" = o)70" = 05... For any v, we

apply the triangle inequality to show that

‘CL-}-U/ 5mam+l/5maa¢‘ + ‘a—kv’ 5min_’_l/5min‘ > |((I+U/ 5ma$+l/5maz) o (CL-i—U, 5min+l/5min)‘

pre“pre post pre”pre post pre”pre post pre”pre post
__ |’ Ssmax __ j/ smin| *
- |l 5p05t ! 5post| - LID(A’ 5pre)’

Note that for any z1,ze = 0, max{x;, zo} = %(:1:1 + xg). It then follows from the previous

display that

/ max ! cmax
max{|a + v}, 0me® + I'6ney|

pre“pre post ) Ypre

, ) 1
@t v O+ US|} > SLID(A,8,).

Since §729% and 67" are feasible in the maximization (43), we see that b > 3LID(A,6%.,),

as needed. To complete the proof, now suppose without loss of generality that

pre

(mgmxl’épost, st 0 €A, 6 = 0% ) _—

Then, we can replay the argument above replacing 6" with a sequence of values {d;} such

that 'd; diverges, which gives that b is infinite and the result follows. m

Lemma C.20. Suppose A is convex. Suppose there exists § € A such that LID(A, 0pe) =
sups, ea,.. LID(A, Opre) < 0. Then there exists (a,v) such that b(a,v) = %supgmeAm LID(A, dpre).

Additionally, for any T and Xy, Eg -5, [a + U’ﬁn] = (0" + 0"), where 6** and 6" are the
upper and lower bounds of the identified set S(A,d + 7).

Proof. Let b™** (6% ) := (maX5 Ubpost, s.t. 0 € Ay dpre = 0 ), where we define b = —0

pre pre

if 05 & Apre. Likewise, define bmm(d;jre) = (min(g Uéposts s.t. 6 € A bpre = (5;T6), where we
define b™" = oo if 45, ¢ Ape. Note that A convex implies that ™ is concave and
b™" is convex. Thus, —LID(6%..) = 0™"(55.,) — 0™ (d5..) is convex (where we define
LID(dy..) = —ooif 6. ¢ Ape). The domain of —LID(05,.) (i.e. the set of values for which
it is finite) is Ay, since it is infinite for 6, ¢ A, by construction, and by assumption,

LID(5%..) is finite for all 0%, € Ap.. Since A is assumed to be convex, it is easy to

verify that A,,. is a non-empty convex set, and thus has non-empty relative interior, so the
2

relative interior of the domain of —LID is non-empty.*> It follows from Theorem 8.2 in

Mau Nam (2019) that d(—LID) = d(—b™*) + d(b™"™) where for a convex function f, df is
the subdifferential f(z) := {v : f(Z) +v'(x — ) < f(x),Vz} and d(—b"*") + O(b™™) is the

32The relative interior of a set is the interior of the set relative to its affine hull. See, e.g., Mau Nam
(2019), Chapter 5.
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Minkowski sum of the two subdifferentials.

Additionally, if LID(0p) = SUp;, en,,. L1 D((Spm) then —LID(6p.) = inf Syt — L1 D(épre)
Thus, standard results in convex analysis (see, e.g., Theorem 16.2 in Mau Nam (2019)) give
that 0 € O(—LID)(Spre) + N(A; Opre), where N(A;0pre) = {Upre : v, (Spre — dpre) <0, Vgpre €

pre

pre

Ay} is the normal cone to Ay at d,... Hence, there exist vectors Upn, Umas such that for
all Opre € Appe,

bmin(épw) + Umm(gpre - 51)7‘6) bmm(‘spre) (44)
- bmax(épre) + Umaac((spre 5137"6) bmw(épw) (45)
- ('Dmin + @max) ( pre — 5p7‘e) 0 (46)

The inequalities (45) and (46) together imply that for all dpre € Ay,

bmaw(épm) + Umm(gp?“e - 6197“6) > o™ (5pre) (47)

Now, let v be the vector such that v,,ss = [ and vy = —0pnin. Observe that

- _
maxa + 'Upreépm +1'0 post = _Max | a+ vpredpre +  max_ 'dpost
SeA Spre€Apre SEA Spre=dpre

max
= max a+ vpreépre D (5
Jp'reEAp're

<a-+ vpreépm + 0" (Opre ) (48)

where the first equality nests the maximization, the second equality uses the definition of

bma:p

, and the inequality follows from (47). An analogous argument using (44) yields that

mina + Upregpre + 7 5post = min a+ vpregpre pmin (51”6)
6€A épreeApre
=a+ Upre(sp'f”e + bmm((sp"’e)' (49>

Now, it is apparent from equation (43) that

ba,v) = max{

maxa + vpre5pre + 5p05t

mina + vpmépre + 5post
beA

beA

Y

b

which is bounded above by max {|a + v}, .pre + 0™ (6pre)| , ! eOpre + 0™ (Opre) |} from
the results above. Setting a = —v,, 0pre — %(bm‘“(épre) + ™" (8,re)), the upper bound in
the previous display reduces to 1 (6™ (0pre) — 0™ (pre)). Since LID(A, Gpre) = 0™ (pre) —
V™ (8pre) and LID(A, Gpre) = SUD;, e

LID(A, gme) by assumption, it is then immediate

pre

A-36



that b < & SUP§, en LID(A, gpre)- The inequality in the opposite direction follows from

2
Lemma C.19.

Finally, substituting in the definition of @ and v above and simplifying, we see that
Er50) [a + v’ﬁn] = 'Bpost — 3 (0™ (Opre) + b™"(8pre) ), which from (6) and (7) we see is the

midpoint of the identified set. n

pre

Lemma C.21. Let x, be the 1 — a quantile of the |N (b, o*)| distribution for b > 0. Then

b+ 0210 < Xa < b+ 021_q)2.

Proof. Since |£| = &, we have that q1_(|€]|€ ~ N (b, 6%)) = q1_a(E]E ~ N (b, 0?)) =
b+ 021_4, which yields the first inequality. For the second inequality, observe that

ql—a(|€| |€ ~N (ba 02)) = ql—a(|€ + b| |§ ~ N(Oa 02))
< bt qallE] [ €~ N (0, 0%) = bt 021

where the first inequality uses the triangle inequality, and the final equality uses the fact

that a mean-zero normal distribution is symmetric about 0. O

Lemma C.22. Suppose the conditions of Proposition A.1 hold. Then there is a unique pair
LID(A, dpre) =: byin. Additionally, N5 AS* A =

1/c*, for the same constant ¢* as in Proposition j.2.

(a,v) such that b(a,v) = %SUPSWGA

pre

Proof. Existence of an (a,v) satisfying b(@, ?) = by, follows from Lemma C.20, so to es-
tablish the existence of a unique solution it suffices to establish uniqueness. In the proof
to Lemma C.7, we showed that 0™ (§4,.) is equivalent to the problem (35). Assump-
tion 4 implies that there is a solution %%, to the optimization (35) such that A(p post)

has rank |B|, where B indexes the binding moments. The solution 4,5, to the prob-
lem (35) is thus non-degenerate. It follows that in a neighborhood of dpe a, 0™ (Opre) =
V™™ (8 apre) + VAl pre)(Opre — Oapre), Where 7 is a solution to the dual problem (see, e.g.,
Section 10.4 of Schrijver (1986)). By the complementary slackness conditions, 7_p = 0.

Moreover, we showed in the proof to Lemma C.7 that 4 is the unique vector that satisfies

YeAm,-1) = 0,7Am1) = 1.
Next, combining the expression for b in (50) along with the equalities in (48) and (49) in

b

(51)

the proof to Lemma C.20, we see that for any (a,v),

_max a-+ v Spm + 0" (Opre)

. r< min (5
pre |~ mm  a + Upreépre + b (5177‘6)
é-preEApre

6PTEEAP’I‘E

Hmwzmw{
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This implies that if (@, v) are such that b(@, ?) = byn, then for all Spm € Apre,

Dyin = Max {’C_L + 7 5,”6 + 0" (Opre)

pre ?

G+ Uy Opre + D™ (Opre)

pre

}. (52)

Now, note that by the triangle inequality, for any scalars z1, xo, x3 with xo > 3, max{|z; +
Tal, |1 + 3|} = $|zo — @3], with equality if and only if 2y + 23 = — (21 + 22). Further, recall
that 0™ (84 pre) — D™ (S apre) = LID(A,6apre) = 2bmin. It follows from these two facts

along with the expression in the previous display that

bmin = @ + ﬁ;reéApre + bmaw((SA,pre) = — (C_l + @;TeéA,pm + bmm(5,47pre)) . (53)
Displays (52) and (53) imply that for all 8. € A,

Tpre(Opre = O pre) + 0™ (Spre) = b™" (Bagre) = 0
which using the local linearization derived above implies that

(z_);z/f)re + ’_ylA(ypre)))(SpTe - 51471"’6) =0

for all Spre € A, in a sufficiently small neighborhood of d4,,.. However, Assumption 4
implies that 04, is in the interior of A,,., and so the equality in the previous display can
hold for all such (im only if v}, = =¥ A( pre). We argued in the proof to Lemma C.19 that
Upost Must equal [, so we have shown that there is a unique value of v. Further, (53) uniquely
pins downs a in terms of v, and so the pair (a,v) is unique, as claimed.
Finally, recall from the proof to Lemma C.7 that —3' A o) = I'. Hence 0" = (=7 A(. preys =7 A( post)) =
—4'A and thus v/¥*0 = Y A¥X*A’5. Since 7_p = 0 and f‘ngfl(g,l) = 1, we see that 1//2/S*0
corresponds with the formula for ¢* given in Lemma C.8.
m

Ovn,n

Uﬁ,n

Lemma C.23. Suppose the conditions of Proposition A.1 hold. Then — 1, where the

optimal FLCI is based on the affine estimator a, + v;/@n and v is the unique value such that

b(@, ) = bynin-

no
Proof. 1t suffices to show that @ — 1. Note that \/nog, = 051 = VU'E*0. By as-
na—ﬁ,n
sumption, >* is positive definite, and we showed in the proof to Lemma C.19 that 0,5 = [, s0
v # 0. Hence 051 > 0. Next, observe that \/no,, , = /v, X*v,. It thus suffices to show that

v, — U, since then both the numerator and denominator converge to the same non-zero limit.

To do this, we will show that every subsequence of v,, has a convergent subsequence. Consider
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a subsequence v,,,,. We argued in the proof to Proposition 3.2 that o,, , < 03, which implies
that \/ v Y*v,, < /0'S*0. Thus, v, is bounded in the Mahalanobis norm using ¥*, which im-

plies that v, is bounded in the standard euclidean norm since >* positive definite. It follows

that v,,, has a convergent subsequence, v,,, 1 — v*. We argued in the proof to Proposition
3.2 that b(a,,v,) — bmin. This implies, however, that a,,, ; is bounded. To see why this is

the case, note that if there is a divergent subsequence a,,, 2, then for any fixed &m € Apre,

/

s Irs . . * . . .
v 2.preOpre + 079 (0pre )| diverges since vy, 2 pre — Vs, Equation (51) then implies

|an,, 2+ v
that b(ay,, 2,vn,, o) diverges, which is a contradiction. Thus a,,, ; is bounded, and so we can
extract a further subsequence such that (an,, 2,vn,, 2) — (a*,v*). For ease of notation, sup-
pose without loss of generality that these convergences hold for the original subsequence n,,.
To complete the proof, we will show that b(a*, v*) = byn, which then implies that v* = v by
Lemma C.22. To show this, note that (43) together with the identity |z| = max{z, —z} im-
ply that b(a,v) = max {(maxsa + v'0 s.t. Ad < d), (maxs —a —v'd s.t. AJ < d)}. Consider
the first inner maximization, and let d,,, denote the optimal value using v = v, , and 0*
the optimal value using v = v*. Since 0* is feasible in the optimization using v, , we have
n,, + V), 0% < ay,, + v, 0p,. Taking limits on both sides of this inequality implies that

a* + (v*)§* = (maX a* + (v*)d st Ad < d) < lim inf (mgxxanm + v, 0st. Ad < d) .

1) m—o0

Applying a similar argument to the second inner maximization, it follows that

b(a*,v*) < lim b(ayn,,,Vn,,) = Dmin.
m—0o0

But b(a*,v*) = by, by Lemma C.19, which gives the desired equality. O
Lemma C.24. lim, ,(cvs(x) — (21-4 + )) = 0.

Proof. cv,(x) solves @ (cvy(z) — ) —P (—cvy () — ) = 1—a. By Lemma C.21, cv,(z) = x+
21—a, Which diverges as © — o0. Thus, ® (—cv,(x) — ) converges to 0 and P (cv,(z) — ) —

1 — a, together implying cv,(z) — 2 — 21_q. O
Lemma C.25. Suppose that Assumption 4 holds at §4 pre. Then LID(A, 84 pre) > 0.

Proof. From (6) and (7), we see that that LID(A,d4 ) = 0 if and only if 6™ (4 pre) =
V™" (84 pre), Where D™ (8pre 4) 1= (ming 'Opost, S.t. 0 € A, dpre = Opre.a), and 0™ is defined
analogously. In the proof to Lemma C.7, we showed that b™" is equivalent to the problem

(35). Assumption 4 implies that there is a solution %>, such that

A(B,post)(S;:st = dB - A(B7pre)5A,pre and A(—B,post)(;;::st < d—B - A(—B,pre)(;A,prw
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where Ap pos has rank |B|. Observe that if ™" (04 pre) = 0" (84 pre), then it must be that

roxe =1 Opre for any 0,,. that is feasible in the problem (35). It thus suffices to construct a

feasible value Spre such that Spre # 1'0;%,. Since A(p posty has rank |B|, its image is RIB! so

there exists gpost such that A Bmost)Spost = —1, for ¢+ the vector of ones. Thus, for any ¢; > 0,

we have that A(B7p08t)(6;“;“st + 615post) < dp — A(Bpre)0apre. However, since the moments

—B are slack at 4., for € sufficiently small, we also have A g post) (5;‘:St + elgpost) <

d_p — A—Bprey0apre- If U'6post # 0, then we are done. If I'6,05; = 0, then since all of the

moments are slack at 57, + 615post7 for €5 > 0 sufficiently small, Spost = Opost T 615post + €9l is

also feasible, and by construction I'(0pest — 0ra;) = €21’ > 0. O

Lemma C.26. Suppose A is convex and centrosymmetric, and 0 4 is such that d € A implies
0—04€A. Then 04 satisfies Assumption 5.

Proof. Recall from the proof to Lemma C.20 that for any 6%, € A, LID(A,J%,) =

pre ) Ypre

b (ox.,) — ™ (0%,.), where the functions 0™ and —b™* are convex. Observe that

pre pre

_ (maax l’(_5post)7 s.t. 0 € A75pre = §F >

pre

- <m§X U8 st St 6 € A, 80 = 0% ) = —pmar(—g¥ ),

pre pre

where the third equality uses the fact that A is centrosymmetric. Hence, —LID(A, %) =

)y Ypre
—b"m*(0p..) — b (=% ..). It follows from the subdifferential sum and chain rules for con-
vex functions (e.g., Theorems 8.2 and 9.3 in Mau Nam (2019)) that 0 — LID(A,6%.) =

o(=vme®)(05..) + (=0(=bm**)(=d5..)), for + the Minkowski sum. It is then immediate
that 0 € d(—LID(A,0)), and hence 0 € argming . —LID(A,dy.). This implies that
LID(A,0) = sup; cn, LID(A, bye).

To complete the proof, we show that LID(A,d4 ) = LID(A,0). We first claim

that for any 0 € A, we also have § + 04 € A. Indeed, by centrosymmetry, —9 € A.

pre

By assumption, this implies that —0 — 04 € A. Applying centrosymmetry again, we see
that 0 + 64 € A, as desired. Next, suppose that 0" is optimal in the maximization
b (0) = (maxs'dpost, s.t. 6 € A, dpre = 0). Then 0™ + ¢4 is feasible in the optimiza-
tion (maxs 'Opost, S.bt. 0 € A, Opre = Oapre), and thus 0™ (04 pre) = 0™(0) 4+ I'd4post- By
analogous argument, we can obtain that 0™ (04 ) < 0™™(0) + 04 post- 1t follows that
LID(A, 84 pre) = 0™ (04 pre) — D™ (84 pre) = 0™ (0) —b™"(0) = LID(A,0), as needed. [

Lemma C.27. Fixz ¥* positive definite, 64 € A, and 74. Suppose Assumption J holds at d 4,
and let B = B(6**). Let Vi, denote the set of optimal vertices used in wg(Bn; A, y/nd, 0% +
x,3%), where 0" = sup S(An, /n(6a +74)), An = v/nA. Then
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lim ]P)(\/ﬁéA,\/ﬁTA,Z*) <Vn = {C’_Y}> = 1’

n—00
where ¢ > 0 and 7 is the vector such that y_g = 0 and g is the unique vector such that

YA _1y=0,5=0,|[7] = 1.

Proof. Observe that V,, = arg Min, ey (sx) Y'Y, where Y, = AB, — Vnd— A1y (0% + ). Since
all vertices y € V(X*) satisfy 1/ A1) = 0 by definition, we have that V, = arg N, ey () Y'Y,
for Y, =Y, — A(_1)(v/n7?*) and 71 the vector constructed in the proof to Lemma C.8.

o

However, we showed in the proof to Lemma C.8 that E( /ms, . /mr,5%) [YR,B] = —A(B,l)x and

o

K (/56 a,/mra,5%) [Ynﬁ,B] — —ow as n — . Lemmas E.1 and F.7 in the supplementary ma-
terial together imply that there is a unique vector v* € V(X*) such that v* 5 = 0, which
satisfies 75 = ¢ for ¢ > 0. By definition, v > 0 for all v € V(¥*), and thus y_p has at least
one strictly positive element for all v € V(2*)\{y*}. It follows that

T}EIOIO E(\/ﬁdA,\/ﬁ'rA,E*) [’y*/}vfn] = —’yE’fl(B’l)x and T}EIOIO E(\/E(SA7\/ETA72*) [’}//}vfn] = —00, V’y € V(E*)\{"y*}

Let P, denote the sequence of data-generating processes characterized by (\/nda, v/n7a, X*).
Note that that for all n, (v* —~)'Y,, is normally distributed with variance (y* —~)'S*(v* —~)
under P,. This combined with the results in the previous display imply that ~* Y, — Y, iﬁp
oo for all v € V(X*)\{~v*}. Since V(X*)\{7*} is finite, this implies that minvev(g*)\h*}(v*’}ufn—
YY) ﬁp o0, from which we see that v*'Y,, = maxcy (s#) Y Y, with probability approaching

1 under P,, which gives the desired result. O]

D Additional Tables and Figures
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Figure D.1: Sensitivity analysis for 6 = 75 for Lovenheim and Willen (2019) using A =
ARM(DM) and A = ASPEM()f)

Male employment, A = ARY(M) Female employment, A = ARM(M)

i s e = B
IIl Iil

T |
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Note: Confidence sets for ASPMEB(J]) are truncated at +50 to preserve readability.
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This document provides additional, supplementary materials for “An Honest Approach to
Parallel Trends” by Ashesh Rambachan and Jonathan Roth. Sections E-F provide statements

and proofs of uniform asymptotic results. Section G provides additional simulation results.

E Uniform asymptotic results

The main text of the paper considers a finite sample normal model, which is motivated as
an asymptotic approximation to a variety of econometric settings of interest. In this section,
we show that our main results for the conditional approach translate to uniform asymptotic
results for a large class of data-generating processes. We refer the reader to Appendix C of
Armstrong and Kolesar (2020) for uniformity results for fixed length confidence intervals.*

Let us briefly highlight the difference between the uniform asymptotic results here and
those in ARP. First, our size control results for the conditional approach are complementary
to those in ARP, as we provide size control results under somewhat weaker conditions specific
to our more specialized setting. For instance, the results in ARP rule out degeneracy in the
distribution of 7 that can arise when the matrix A has linearly dependent rows (as occurs, e.g.,
when A = ASPPB(M)). Second, we provide uniform asymptotic versions of our consistency

and local asymptotic power results, which are new to this paper and do not have analogs in

ARP.

E.1 Assumptions

Throughout this section, we fix A = {A§ < d} for some A with all non-zero rows, and assume
that A is non-empty. We consider a class of data-generating processes, indexed by P € P,

under which \/ﬁ(ﬁn — Bp) is asymptotically normal, where the asymptotic mean Sp can be

33We note, however, that the setting of Armstrong and Kolesar (2020) differs from ours in that they
consider a local-to-0 setting in which A shrinks with sample size.
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decomposed as the sum of 0p € A and M, 7p With 7p € RT 3' The parameter of interest is

Op := l'tp, for some fixed [ # 0.

Assumption 5. Let BL; denote the set of Lipschitz functions which are bounded by 1 in

absolute value and have Lipschitz constant bounded by 1. We assume

lim sup sup
n—=%0 peP feBL,

where Ep ~ N (0, Xp), and Bp = 0p + MpostTp for 0p € A and 7p € RT.

Ep | F(V(Ba = 80))| ~ELF(€R)]|| = 0,

Convergence in distribution is equivalent to convergence in bounded Lipschitz metric (see

Theorem 1.12.4 in van der Vaart and Wellner (1996)), so Assumption 5 formalizes the notion

of uniform convergence in distribution of v/n(3, — 8p) to a N (0, p) variable under P.
Our next assumption requires that the eigenvalues of the asymptotic variance of the

event-study coefficients be bounded above and away from zero.

Assumption 6. Let S denote the set of matrices with eigenvalues bounded below by A > 0
and above by A=\ Forall Pe P, XpeS.

Next, we assume that there is a uniformly consistent estimator of the variance of B )

Assumption 7. We have an estimator S, that is uniformly consistent for ¥p,

lim sup Pp <||f]n —Xp|| > 6> =0,
P

n—0 pe

for all e > 0.

In order to more clearly articulate our next assumption, it is useful to first present the

following result, which characterizes the set of dual vertices under Assumption 6.

Lemma E.1. Let F(X) := {vy : 121/(.,,1)7 = 0,6(2)y = 1,7 = 0} be the feasible set of the
dual problem, where (%) is the vector containing the square-roots of the diagonal elements
of AXA'. Let V(X) denote the set of vertices of F(X). Then there exists a finite set of
distinct, non-zero vectors 1, ...,7y such that ||v;|| = 1 and v; = 0 for all j, and for any ¥
positive definite

V(E) = {a(E)n, ....cs(X)71},

where ¢;(X) = (7;6(%))7".

34To avoid notational clutter, we drop the additional subscript “post” on 7 and simply index 7 by the
underlying data generating process P.
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For ease of notation, we define v;(X) := ¢;(2)%,;. With this notation in hand, we can then

state our next assumption.

Assumption 8. Suppose ;A # 0. Then for alli # j and all P € P,

(7 (2p) = 7i(Ep)) ALpA'(7i(Ep) — 7(Ep)) > ¢,
for some constant ¢ > 0.

Assumption 8 guarantees that there are not two vertices of the feasible set that produce
non-degenerate objective values in the dual problem (16) and are perfectly correlated asymp-
totically. Assumption 8 holds trivially if the minimal eigenvalue of AXpA’ is bounded from
below. Note that under Assumption 5, AXpA’ is the asymptotic variance of \/ﬁABn, and
thus corresponds with the asymptotic variance of 1/nY,(0), the moments used in the con-
ditional and hybrid tests scaled by 1/n. Assumption 8 can be dispensed with if we use a
modified version of the conditional and hybrid tests that adds full-rank normal noise to Y,

which ensures that the asymptotic covariance of the scaled moments is positive definite.

E.2 Size control

We now establish uniform asymptotic size control for the conditional test. ARP establish
uniform asymptotic size control under high-level conditions, whereas here we show size con-
trol in our setting under the lower-level conditions introduced above. These conditions are
somewhat weaker than the higher-level conditions in ARP. For instance, we allow for the
possibility that 7 has zero variance conditional on a set of optimal multipliers, which is ruled
out by assumptions in ARP but can be shown to arise in our context, e.g. for A = ASPFB,

As in ARP, we show size control for a modified version of the conditional and hybrid
tests that never rejects if the critical value is below a certain finite value —C'. That is, we
consider ¢, = ¢§ - 1[)) = —C1, for ¢ an indicator for whether the a-level conditional test
rejects and 7 the solution to the linear program (15). We do this for technical reasons to
avoid complications related to sequences where both 7 and the critical values diverge to —co.
However, this modification is reasonable on substantive grounds, since when 7 is very small
all of the moments are satisfied in the data, and the conditional test (potentially) rejects
only due to extreme realizations of the critical values. Moreover, we show in Section E.4
below that the modified tests retain desirable asymptotic power properties.

Under the assumptions stated in the previous section, the modified conditional test uni-

formly controls size.

Proposition E.1. Suppose Assumptions 5 to 8 hold. Then
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lim sup sup Ep ¢*a(ﬁn,A d,0p, 2 )] < a.

n—o PeP

E.3 Consistency

We now provide conditions under which the conditional test is uniformly consistent. Specifi-
cally, we establish a uniform asymptotic version of the consistency result given in Proposition
4.1 in the context of the finite sample normal model.

To show uniform consistency for the conditional test, we require some additional assump-

tions on the asymptotic distribution of the estimated covariance matrix 3

Assumption 9. Let W, = (8, — Bp), (vec(S,) — vec(Sp))'), where vec(S) is the vector

of the elements of the matrix 3. We assume

lim sup sup ||Ep [(vaW,)] — E[£(65)]]] = 0.

n—%0 peP feBL,

YXp  Vpps

where £5 ~ N (0, Vp), Vp = ( v v
pys  Vpy

) and Bp = 0p + Mpyoump for 6p € A and
Tp € RT.

Assumption 10. For all P € P, the matriz Vp defined in Assumption 9 lies in a compact set
V. Additionally, ¥p has eigenvalues bounded between A > 0 and X\, and (Ep—VpﬂEVP_éVRZB)

has eigenvalues bounded below by A > 0.

Assumption 9 strengthens Assumption 5 to require that the pair (B , f]) converge uniformly
to a joint normal distribution centered at their respective means. Although somewhat more
restrictive, we note that event-study estimates are often estimated via OLS, and standard
covariance estimators for OLS, including cluster-robust variance estimators, produce asymp-
totically normal estimates as the number of clusters grows large (Hansen, 2007; Stock and
Watson, 2008; Hansen and Lee, 2019). Note that we do not impose that the asymptotic
distributions of B and ¥ are independent, as would occur in linear models if the linear model
is properly specified. Likewise, Assumption 10 strengthens Assumption 6 to require that the
asymptotic variance matrix of the pair (B , i)) lies in a compact set, and that the error in B
is not perfectly colinear with the error in 31, The latter condition can be ensured to hold by
adding full-rank noise to B . With these added conditions, we obtain asymptotic consistency
for the (modified) conditional test.

Proposition E.2. Suppose Assumptions 7 to 10 hold. Then for any x > 0,
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. 1.
lim inf Ep | ¢S (Bn, A, d, 0% + 2, =%,) | = 1.
’ n

n—o0 PeP

E.4 Local Asymptotic Power

We now establish conditions under which the power of the conditional test converges uni-
formly to the power envelope.

Recall that in the finite sample normal model, we showed that the local power of the
conditional test converged to the power envelope under Assumption 4, which intuitively
guaranteed that the “right” number of moments bind at the edge of the identified set. We
define P, to be the set of distributions for which this condition holds and the non-binding

moments are slack by at least e.

Definition 3. For € > 0, let P, denote the set of distributions P € P such that Assumption
4 holds when setting 64 = dp, and for which all elements of the vectors egs5+) and ep(s++) as

defined in Assumption 4 are bounded below by e.

Recall from Appendix A.2 that our Assumption 4 is implied by linear independence constraint
qualification (LICQ). Assuming that P € P, is thus similar to a uniform LICQ assumption,
as in e.g., Gafarov (2019) and Cho and Russell (2018). We note, however, that we require
this assumption only for our uniform local asymptotic power results, and not for uniform
asymptotic size control.

Our next result states that the local power of the conditional test converges to the power
envelope in the limiting model uniformly over P.. This can be viewed as an asymptotic

version of Proposition 4.2.
Proposition E.3. Suppose Assumptions 5 to 7 hold. Let 6% = sup S(A, Bp). Then for any

e>0 andx >0,

lim sup
n—%0 pep,

=0,

. 11, \
Ep |:Q/)*C,a(ﬁnvA7d7 Q?Db + \/_ﬁx7 EZH)] - P (P7 ZE)

where
p*(P,x) = lim sup Pis. . 1is ((Q}éb + L:1c) ¢C )
ML 6 nTa (A, 15p) Or.7p o r) Vn ’

is the optimal limiting power of a size-a test in the finite sample normal model using
(04,74, 2%) = (dp,Tp, Xp), provided that —C', the threshold for the modified conditional

test, is set sufficiently small.
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If a € (0,.5], then C' = 0 is sufficient for the conclusion of Proposition E.3 to hold.
Proposition E.3 shows that the power of the conditional test converges to the power of
the optimal test in the limit of the finite sample normal model as n — oo. Using results
from Miiller (2011), we next show that that the power bound p*(P,z) from the limiting
model is an upper bound on the asymptotic power of a large class of confidence sets that
control size asymptotically. In particular, we consider the set of confidence sets that i) can
be written as functions of \/ﬁBn and 3, ii) control size asymptotically over all sequences
of distributions that induce a normal limit, and iii) are invariant to transformations that
preserve the identified set for all values of 5. To formalize iii), let A+ = {v : Av = 0}
denote the null space of A and let G be the group of transformations of the form g, :
B +— B+ v for v e A, It is then immediate from the definition of the identified set,
S(A,B) ={0 : 30 € A, Tpost 8b. B = 0 + MpostTpost, ' Tpost = 0}, that S(A, B) = S(A, g,5)
for any 8 and g, € G. By iii) we mean that we will consider the class of confidence sets such

that C(v/nB3,%) = Clgo(y/nf), %) for all g, € G and all £.

Proposition E.4. Suppose that C,(-,-) is such that

lim sup Pp, <9pn ¢ Cn(\/ﬁBH, f]n)) <«
n—o0
for any sequence of distributions P, such that \/n(B, — Bp,)) B4 N (0, T%), =, i?p ¥,
where Bp, = 0p, + MyosiTp, and 0p, = 'tp, for some sequences Tp, € RT and op, € A.
Suppose that for some distribution P*, \/ﬁ(ﬁn—ﬁp*) ]itd N (0, *) and S Iiﬂ;p >*, where
Bpx = 0px + Mo Tpx for px € A satisfying Assumption /. Let 0% := sup S(A, Bpx) be the
upper bound of the identified set given Bp«. Then, for any v > 0,

1
vn
where p*(P*, ) is defined in Proposition E.3.

lim sup Pp+« (9}‘}; +

n—o0

7 ¢ Caly/nfh, m) < (P"2),

F Proofs of uniform asymptotic results

F.1 Proofs and Auxiliary Lemmas for Uniform Size Control

Proof of Lemma E.1

Proof. Recall from Section 8.5 of Schrijver (1986) that v is a vertex of the polyhedron
P={zeRN : Wa<b}iff ve Pand Wz z = by for J a set of indices such that W7,

has K independent rows. It follows that v € V() iff v > 0 and there exists J such that
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(')_1)

Wj = —](j7.)
5_/
0
has row rank equal to K, and Wyv = | 0 [, where K is the number of rows of A.
1

A/
(.—1) has exactly K — 1
1.

linearly independent rows and there exists a vector v; # 0 such that W,v = 0 and v; > 0.

Now, let J be the set of indices J such that W, := (

Since by construction Wj has rank K — 1 and K columns, its nullspace is 1-dimensional. It
is then immediate that for each J € J, there is a unique vector v > 0 such that ||v7|| =1
and WJT) 7 = 0. Moreover, J is finite, since there are a finite number of possible subindices
of I, and thus we can write {v7 : J € J} = {01, ...,0;} for distinct vectors vy, ..., 0.

It now remains to show that V() = {¢1(X)v1,...,cs(X)vs}, for ¢; as defined above.

First, suppose that v = ¢;(2)v; for some j. By construction, fl’( v =0,v >0, and dv =

has rank K — 1 and W v = 0. From the fact that W v = 0, whereas 5'v = 1, we see that ¢’
W
/

. A
(6'v;)"(0'v;) = 1, and so v € F. Additionally, there exists J such that W = < =1 )

o

must be linearly independent from the rows of Wj, and thus W, = ( ) has rank K.

It follows that v e V(X).
Next, suppose that v € V/(X). Then v = 0, and there exists J such that

Wj = —](j,.)

0 -

has row rank equal to K, and Wyv = [ 0 | Let W, = ( A/("_l) ) Note that since
] —Iig,)

WJU = 0, whereas ¢’v = 1, ¢ must be linearly independent of the other rows of W, from

which it follows that T has row rank K — 1. Thus, J € J, and so v = cv; for some j and

¢ > 0. Since 'v = 1, we have ¢5'0; = 1, which implies ¢ = (6'v;) ™!, which gives the desired

result. O
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Proof of Proposition E.1

Proof. First, note that by Lemma C.2, wg(én, A, d,Op, %XA)”) = wg(ﬁﬁn, A, y/nd, \/nOp, f]n)
Additionally, we show in the proof to Lemma C.2 that the values of 1 for these two problems
are the same, from which it follows that the modified tests are tests are equivalent as well,

ga(ﬁn, A,d,Op, %in) = ¢£a(\/ﬁ/3)n, A, y/nd, \/nOp, in) It thus suffices to show that

limsupsup Ep [1#3&(\/5@“ A, +/nd,\/nfp, 2n)] S .

n—o PeP

Towards contradiction, suppose the proposition is false. Then, following Andrews, Cheng
and Guggenberger (2020), there exists a sequence of distributions P,, and an increasing

sequence of sample sizes n,, such that

liminfEp, [wfa(wﬁnmﬁnm, A, /Tomd, /om0, 2%)] > ot w, (54)
m—00 ’

for some w > 0.
Define Y, := /n,, (Aﬁnm —d— 121(-,—1)9Pm> and X := /1(.7,1). Then,

UE (VB s Ay Mo, nOp, B ) = UGS (Vi X, AS,, AY).

Further, define Y, :=Y,, — A(Aj_l)F(_l,.)(ﬂ/anPm) For notational convenience, let X, :=
Sp,, and ¥, := %, . By Lemma 16 in ARP, ¢, (Y;,, X, AD,,A") = ¢, (Y, X, A, A').
Additionally, observe that

Y/m = A/ M (Aénm — d — A(.vl)epm — A(.7_1)F(_1,.)Tpm)
= N, <ABnm — d — A(.,l)l,Tpm — A(~,—1)F(—1,-)7—Pm>

where the first equality uses the definition of p, = ['7p, and the second equality follows

from Lemma F.5. This implies that

0

TP,

Y, = Ay/nm (Bnm —bp,, — ( )) + /N (Abp, —d). (55)

Next, observe that by Assumption 5, dp € A = {§ : AJ < d} for all P, and so
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/T (A0p,, — d) < 0. We can therefore extract a subsequence m; such that

/Tomy (Adp,, — d)l — py € Ru {—ow}.

Passing to further subsequences, we can extract a subsequence myg (for K the number of

rows of A) along which

Vmy (A(Sme —d) - p* e {Ru {—o}}".

Additionally, by Assumption 6, X p_ is contained within a compact set, and so we can extract

a further subsequence myg ., along which ¥ — »* for some X* € S. For notational

MK 41
ease, we will assume that these convergences hold for the original sequence (m,n,,) for the
remainder of the proof

Now, equation (55) along with Assumptions 5 and 7 and the continuous mapping theorem
imply that

(Yo, En) 5 (€ + p*, 5%),

for € ~ N (0, AL*A’). Observe from (55) that for all m, Y, € col(A) + {—a-d : a > 0},
where col(A) is the column space of A and + represents the Minkowski sum. Likewise, if
& ~ N (0, AX*A’), then £ = As+ for &g« ~ N (0, £*), and so & is supported on col(A).
Thus, &+ p* is supported on col(A) + p*. We then see that both Y, and & 4 ;* are supported
on 2 :=col(A)+ ({—a-d : ae R} u {u*}).

Suppose first that max,ey s+ y'p* = —oo. Note that 7, = max_ cy (s, ) 7'Y,,. From
Lemma E.1, V(2) = {c1(£)71, ..., ¢;(2)7,}, where the functions ¢;(X) are continuous and by
Lemma F.1, ¢;(X)* = —¢ > 0 for all j. Since max,ey(zx) y'p* = —00, we have ¢;(X*)y;u* =
—oo for all j. But the continuous mapping theorem then implies that for all j, ¢; (XA]m)"y;}}m —y
¢;(X*)7j(€ + pu*) = —oo, and hence 7, —, —o0. Thus, P (4, < —C) — 1, and so our tests
never reject asymptotically, which contradicts size control failing. For the remainder of the
proof, we assume that max,cy(z+)7'p* is finite. (Note that since 4; = 0 and p* < 0, we
cannot have max,cy(s#) 7' pu* = 00.)

Next, note that it follows readily from the construction of the (unmodified) conditional

test in Section 4.2 that the unmodified conditional test rejects iff
p(Y, %) 1= Pe (€ < (Y, %) | € (Y, 5), 07(Y, )], ¢ ~ N (0, 02(Y,5)))) > 1 —a,

where the functions 7, ag, v and v* are defined as follows. We define 7(Y, ) to be the
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conditional test statistic using Y and X,

AY. D) = 'y
n(Y, %) max 7Y,

We define o7(Y,¥) to be the estimated variance of .Y for v, € argmax_ .y (5, 7'Y. That is,
O’%(K Y) =LAV Ay,

Note that o7 (Y, ¥) is only well-defined if 7, AX A"y, is the same for all v, € arg max_ .y (5 7Y
We will show below, however, that this occurs with probability 1 in the limiting model.

If 02(Y, %) > 0, then we define v'°(Y, X)) and v*7(Y, ¥) to be the minimum and maximum
of the set

3
C ={c: max SV*+¢C 3
VeV (Z) Vi 2V

where as before 7, is an element of arg max_ ¢y ;) 7'Y and we define

S, = (1 = E”f“) Y.
Vi XY
On the other hand, if a%(Y, ¥) = 0, then we define v'° = —oo and v*» = co. This is a
notational convenience that allows us to capture the fact that when 0,27 = 0, the unmodified
conditional test rejects iff (Y, X) > 0, since P({ <7 |( ~N (0, 0)) = 1[5 > 0].
Since the modified conditional test rejects only if the unmodified conditional test rejects,
(54) thus implies that

lim inf Pp, (p(ffm, $)>1- a) > o+ w. (56)

m—00

Lemma F.3 shows that the function p(-,-) is continuous at (£ 4+ p*, 3*) for almost every

&~ N (0, AX*A"). The continuous mapping theorem then implies that
¥ Sy d * *
p(Yin, ¥) = p(§ + 1", 57).

Moreover, Lemma F.4 implies that the distribution of p(§ + p*, ¥*) does not have a mass

point at 1 — a;, and hence

Py (p(f/m,i) > 1 —a) SP(E+ T > 1 a).
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However, since the conditional test controls size in the finite-sample normal model,
Pe (p(§ + p*, %) > 1—a) < a,

and thus
liminf Pp, (p(ffm, f)) >1-— a) < a,

m—00
which contradicts (56).
[

Lemma F.1. Suppose Assumption 6 holds. Then for any x and X € S, A’z < '3z < \r'z.
Additionally, there exist constants ¢ > 0 and ¢ such that for all X € S and all j =1, ..., J,
c < ¢j(X) <¢, forcj(X) as defined in Lemma E.1.

Proof. By the singular value decomposition, we can write ¥ = UAU’, where U is a unitary
matrix (UU’ = I) and A is the diagonal matrix with the eigenvalues of ¥ on the diagonal. By
Assumption 6, these eigenvalues are bounded between A > 0 and A > \. Thus, for any z, we
have 2'Sx = (U'z)A(U'z) = Y, \i(U'z)?. Tt follows that 2’z < Y, AM(U'z)? = \d'UU'z =
Az'z. It can be shown analogously that 'Sz > Ax’z. Now, recall that ¢;(X) = (¥6(%)) ",
where 67 = A(i,,)EA(@.). Let m4 = max; A(L,)A(i,.) and m, = min; A(@.)A(z‘,), and note that
both m and m are strictly positive since A is assumed to have no all-zero rows. It then
follows from the previous discussion that &; € [v/Am4, \/7 := [0, Gup]- Moreover, since

> 0 and 7; # 0 for all j, we have that 76 > max{¥;}o; > minj{max{7;}}o; > 0, where
the last inequality uses the fact that the set 74, ...7; is finite. Likewise, for K the dimension
of 9;, we have ¥;0 < K max{?;}0., < max;{max{y;}d.,} < 0. We have thus shown that
%5(2) is bounded between two positive finite values, and thus the same is true of its inverse,
which suffices for the result. m

Lemma F.2. Let p*, X*, and ) be as defined in the proof to Proposition F.1, and assume
max,ey (s*) Y (1* is finite and Assumption 8 holds. Let N(X*) be an open set containing ¥*.
Then (Y, %), O’%(Y, ¥), v(Y, %), v?(Y, %) — when viewed as functions over 0 x N(X*) —
are continuous in (Y,X) at (& 4+ p*,X*) for almost every & ~ N (0, AL*A"). Additionally,
for almost every &, one of the following holds:

1) There is a neighborhood of (€ + p*, %) on which o}(Y, %) > 0 and v'°(Y,X) < v*?(Y, X).

2) There is a neighborhood of (€+p*, X*) on which H(Y, %) <0, 02(Y,X) = 0 and v"°(Y,X) =
—oo, v"P(Y, %) =

Proof. We first show that 7(Y, ) is continuous. Lemma E.1 implies that
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N(Y, %) := max 7Y = max{c; ()Y, ..., c;(X)V;Y},
YEV(E)

where the functions ¢;(X) are continuous. We claim that each of the functions in the max
above are continuous in (Y, X) at (£ + p*, X*). If Y were finite-valued, then this would hold
trivially. However, since some elements of Y may be equal to —oo, we additionally need to
show that there is a neighborhood of ¥* such that for all 3 in this neighborhood and all 7,
the elements of ¢;(X)%; do not change from 0 to non-zero or vice versa. However, by Lemma
F.1, ¢;(3*) = ¢ > 0 for all j, and so for ¥ sufficiently close to £*, ¢;(¥) > 0, and thus each
element of ¢;(X)%; has the same sign (0 or positive) as the corresponding element of 7;, as
we desired to show.
Next, define V(Y, %) := arg maxX,cy sy VY. We claim that with probability 1, either
V(& + p*, %) is unique, or 7, A = 0 for all 7, € V(Y Y)). Observe that since ¢ is finite with
probability 1 and max,cy (s#) 7' p* is finite by assumption, it follows that maz,cy sy (£ +
©*) is finite with probability 1. Let 71,7, € V(X*). Note that 71,72 € V(£,5*) only if
(1 — 7)€ = (72 — 71)'u*. Observe further that (73 — v2)’¢ is normally distributed with

!/

variance (y; — 7o) AX*A'(y1 — 7). Thus, (11 — 72)’¢ is equal to any particular constant
with positive probability only if (y; — 72) AX* A’ (1 — v2)" = 0. Since ¥* is positive definite,
(71 —72) AX* A (71 —72) = 0 iff (71 —72)’A = 0. However, by Assumption 8, (71 —72)A =0
only if YA = 74A = 0. It follows that at most one of 7, and v, are in V with probability
1, or /A = 7,A = 0. Since the set V(X*) is finite, it follows that either V(& + p*, %) is
unique, or all of its elements have 7, A = 0, as needed.

Suppose first that every ~, € V(§ + p*, 3*) satisfies v, A = 0. Without loss of generality,
assume that V(¢ + p*) = {c1(Z*)1, ..., ¢z (5)7,, ), where 1 < J; < J. We first claim that
there is a neighborhood of (§ + p*, ¥*) on which max,cy () 7Y = ¢;(¥)7;Y for some j < J.
This is trivial if J; = J. If not, let j < J; and 7 > Jy. Since ¢;(3%);(§ + p*) € V(§ + p*, %)
and ¢;(S*)7(€ + p*) ¢ V(€ + p*, ©*), we must have i (X)) Y5+ p*) > ci(XF) 7 (€ +p*). We
showed above that the functions on both sides of the inequality are continuous in (Y, X)) at
(& + p*,2*), and thus there exists a neighborhood of (£ + p*,%*) on which the inequality is
preserved, and hence max,ey(x) 7Y > ¢;(X)7;(§ + X). Additionally, since there are finitely
many ¢ > Ji, we can choose a neighborhood such that this holds simultaneously for all
i > Ji, which implies that in this neighborhood V (Y, £) € {¢y(X)1, ..., ¢, (£)7, }, as needed.
It follows that o7(Y,X) = 0 for all (Y,%) in this neighborhood, since 754 = 0 for all

< Ji, which implies 7;AXA"y; = 0. Additionally, note that by definition, (Y, %) = —0
and v"P(Y,¥) = oo whenever o7(Y,%) = 0. Thus, 62(Y,%), v"°(Y,X), and v*?(Y,X) are
continuous at (£ + p*, X*).

S-12



To show that (Y, ¥) < 0 in a neighborhood of (£ + u*, ¥*), observe that it is immediate
from the definition of € that any Y € € can be written as Av — a; - d + asu*, for v € R¥
and ay,ay > 0. For any j € {1,..., 1}, ;A = 0, and thus 7)Y = —a,5;d + ax¥;u*. However,
since 7; = 0 and p* < 0, we have that ay¥;u* < 0. Likewise, since A is assumed to be non-
empty, there exists some ¢ such that A6 —d < 0. Since 7;A = 0 and 7; > 0, it follows that
¥j(=d) < 0. Hence, ;Y < 0 for any Y € , and thus, in a neighborhood of ¥* sufficiently
small such that ¢;(¥) > 0, ¢;(X)7;Y < 0. Since we've shown that in a neighborhood of
(§+p*,5%), N(Y,X) = ¢;(X)7;Y for some j, it follows that n(Y,X) < 0 for (Y, X) sufficiently
close to (& + p*, X*).

Next, suppose that V(¢ + p*) has a single element 7, = cj(B*)7;(€ + p*) for some
j € {1,..,J} such that ;A # 0. Without loss of generality, suppose j = 1. We first
show that V(Y,X) = ¢1(X)¥% in a neighborhood of (£ + p*). Indeed, since V(§ + p*) =
c(Z*)Y1 (€ + p*), for all i > 1, ¢ (Z*)91 (€ + p*) > i (X*)7. (€ + p*). However, since we've
shown the functions on both sides of this inequality to be continuous in (Y, %) at (&4 u*, X*),
there is a neighborhood of (£ 4+ p*, ¥*) such that for all i > 1, ¢;(X)3Y > ¢;(2)7}Y, and
hence V (Y, %) = ¢;(X)7; in this neighborhood. It follows that in a neighborhood of (& + p*),
o2 (Y, %) = c1(8)7; AL A’cy(¥)71, which is clearly continuous in X. Additionally, by Lemma
F.1, ¢(3*) = ¢ > 0, and so 07 > ¢*3]AX* Ay, which is positive since 1j4 # 0 and ¥*
is positive definite. From the continuity of 0727, it follows that there is a neighborhood of
(€ + p*,¥*) such that o2(Y,X) > 0.

Next, consider v°(Y, ). Let 74(X) = ¢1(X)¥;1. For ease of notation, we will make the
dependence of v, on ¥ implicit where it is clear below. The results above imply that in a
neighborhood of (& + p*, $*), v!°(Y, X)) is the minimum of the set

CV.2) = fe : max 7 <57*(Y)+ > c) _ o,

for

Rearranging terms, we see that

C={c:0= Wrerll/a()é) Ay i (V) + by e},

/
)
where a. ., (Y) := 5, (Y) and b, 5, := 7/ E%k — 1. Note that a, -, (Y) =0 = b,, -,, 50
’Y* Ve
0 < maxX ey () Qy,y, (Y) + by q,c for all c. Moreover, for ¢ = 4,Y, the max is attained at -,
by construction. Hence, the set C' is non-empty.

Intuitively, if we plot a,.,(Y) + b,,, as a function of ¢, then each v € V(X) defines
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a line, and the set C represents the values of ¢ for which 0 is the upper envelope of this
set. It follows that the lower bound of C' is the maximal x-intercept of a line of the form

Uy (Y) + by c with by . < 0. Hence,

— Y
UlO<Y, Z) _ max a'Yv'Y*( ) )
(vEV (N7} by, <0} Dy qy

Recall that by Lemma E.1, V/(X) := {%(X), ...,7s(2)}, where 7;(X2) := ¢;(£)7; and ¢;(X) is
continuous. Additionally, we showed earlier in the proof that for all j, ¢;(X)7;Y is continuous
in a neighborhood of (£ + p*, ¥*). It is then immediate from the definitions of a., ., (Y) and
by, that for all j, a,,(g) =) (Y) and by, (5) 4, () are continuous in (Y, ¥). Without loss of
generality, suppose that for 2 < k < Ky, by, (5#) 4, (5%) < 0; for k1 < k < Ky, by, (5%) 4 (z%) = 0;
and for k& > ky, by, (%) 4s(z%) > 0. From the continuity of b, (s) . (), it is clear that in a
neighborhood of (£ + p*,X*), by, (2)1.(x) > 0 for all 2 < k < ky and by, (5)4,(x) < 0 for all
k > ko. Hence, in this neighborhood,

Ulo(m):max{ T T Y R M} (57)
() 2kt Dy () me(m)  1EVOE) Dy

where

VO(E) = {"}/k(z) : k’l <k< k27b’¥k( )y (D) < O}

and we define the max of an empty set to be —oo. It is clear from the continuity of the
functions @ and b that the inner max on the left side of (57) is continuous. To show that v%
is continuous at (£ + p*, ¥*), it suffices to show that for any sequence (Y, %) — (& + p*, X*),
the max on the right hand side of (57) converges to —co. To do this, observe that by
construction, @, ., (Y) + by, - 7Y = 'Y —4.Y. Since for any k£ > 1, 7.(X*) (£ + p*) >
Yie(E*) (4 p*), it follows that a., (s#) v, () (E+ 15) + by (55) e (m%) - (§+11*) < 0. Additionally,
by (%) s (m%) (§+ 1) = 0 for k € (ky, k2], and so for such values of &, a., (z#) 4, (%) (§+1*) < 0.
However, this implies that for any sequence (Y,X) — (£ + p*) and k € (ky, ko], we have
— 0y, (2),7(x) (Y) approaching a positive limit, and b., (5) ., ) approaching 0. For values of
(Y, %) where by, (s) 4.y > 0, it follows that —a., (5)4,.()(Y)/byy (5,74 (x) becomes arbitrarily
negative, whereas for values of (Y,X) where by, (s).(x) = 0, 7% is not included in V°. It
is then immediate that the max on the right hand side of (57) converges to —oo, which
suffices to establish the continuity of v at (£ + u*,¥*). The continuity of v*¥ can be shown
analogously.

To complete the proof, we now demonstrate that in a neighborhood of (€+pu*), v(Y, X)) <
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v"P(Y,Y) for almost every &. Note that since we have shown v and v*? to be continuous,
it suffices to show that v'°(£ + p*, $*) < v*P(€ + p*, 3*). We showed above that for almost
every &, either V(f + 1*) contains only elements such that 4/A = 0, or V(f + 1*) has a unique
element such that 4’4 # 0. In the former case, we showed that v = —o0 and v*? = .
Suppose we are in the latter case. We showed that v°(& + p*, $*) is the x-intercept of a line
of the form a + b - ¢, where b < 0 and a + b- % < 0. Hence, v'°(¢ + p*, %) < H(€ + p*, X).
However, by construction v < 7 < v*, and thus v'° < 7 implies v'° < v*?, which completes
the proof.

O

Lemma F.3. Let u*, X*, and ) be as defined in the proof to Proposition F.1, and assume
max,ey (s+) Y (¥ is finite. Let N(X*) be an open set containing ¥*. Define p : 0 x N(X*) —
[0,1] by

p(Y, %) =P (¢ < i(Y,8) | ¢ € [p(Y, %), 0" (Y, 5)],{ ~ N (0, 02(V, %)) .

Then p(Y, X)) is continuous in both arguments at (§+u*, %) for almost every & ~ N (0, AX*A")

and X* € S non-stochastic.

2

lo ,u
y U p70.77

Proof. From Lemma F.2, for almost every &, the functions 7, v are continuous at

(& + p*,X*). Additionally, for almost every &, either

1) There is a neighborhood of (£ + p*, ¥*) on which o7 (Y, ¥) > 0 and v"(Y, ) < v**(Y, %),

or

2) There is a neighborhood of (§+p*, ¥*) on which (Y, %) < 0, 07(Y, ) = 0 and V(Y. ) =
—o0, v"?(Y,X) = .

First, suppose 1) holds. Note that for v'° < v*? and ¢, > 0,

O (1i/0y) — P(v"/0y)

Pe (¢ <ilCe[v,0"],C~ N (0, 07))) = (v /ay) — (vlo/ay)’

which is clearly continuous in 7, v, v*?, and 7,. The continuity of p(Y, ) then follows from
the continuity of 7, v'°, v*, and o,
Next, suppose 2) holds. Note that

Pe (¢ <nl¢e[—o0,0],¢ ~N(0,0)) =1[H > 0].

It then follows that when 2) holds, p(Y,3) = 0 in a neighborhood of (£ + p*, ¥*), and thus

1s continuous. ]
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Lemma F.4. Let p(Y,X) be as defined in Lemma .3, and suppose max ey s+ ¥ p* is finite.
Let & ~ N (0, AX*A"). Then for any a € (0,1), P(p(§ + p*,X*) =1—a) =0.

Proof. Note that for v'* < v*? and o, > 0,

O(1i/0y) — P(v"/0y)

P (¢ <n|¢e [v' 0], ¢~ N (0, 0,))) = O (v /a,) — ®(vie/a,)’

Thus, when v'° < v*? and o, > 0, p(€ + pu*,¥*) = 1 — a iff §j = 7, - c1_4 (0", v"?, 0,)), where

c1-a (v, 0", 5,) is the unique value that solves

Der-a) — P/
®(vr/a,) — ®(vlo/a,)

=1-o.

However, 7(¢ + u*,3*) has a truncated normal distribution conditional on v'°(€ + p*, £*%),
v (€ + p*, ¥*) and Uf](é’ + p*, 3*), with truncation points v'°(¢€ + p*, £*) and v*?(€ + p*, $*)
and (untruncated) variance 072](5 +p*, 3*), and hence is continuously distributed when v;,(£+
P ") < vg(E + p*, %) and o2 (§ + p*,X*) > 0. Thus, conditional on vy(€ + p*, X*) <
V(& + p*,5*%) and o2 (§ + p*, X*) > 0, (€ + p*, B*) = ¢1_o(v'°, 0", 0,) with probability
Zero.

Additionally, observe that

P (¢ <n)[¢e[-m,0],¢~N(0,0)=1[7 > 0]

Hence, whenever 7(¢ + p*, 2*) < 0, v'°(£ + p*, X%) = —o0, v"P(£ + p*, X%) = 0 and 0, (£ +
w*,3*) =0, we have p(§ + p*, %) = 0 # 1 — a for almost every .

However, from Lemma F.2, with probability 1 either i) v;,(€ 4+ p*, %) < vy, (€ + p*, X*)
and o7 (€ + p*, X*) > 0, or ii) (& + p*, X*) <0, (€ + p*, X*) = —c0 v"P(£ + p*, %) =
and o, (§ + p*,X*) = 0. The desired result then follows immediately.

]

Lemma F.5. For any vector v e R7,

i ; 0
Ay(l'v) + A —nLryo = A ( ) v.
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Proof. By definition,

Additionally, the first row of I' is assumed to be I, so I" = I(; yI". It follows that

~ 0

A(.,l)l/v =A ( / ) F_lf(.,1)[(1,.)rv

- 0 .

A(.,_l)l“(_l,.)v =A I r [(.’_1)1(_17.)Fv.

Noting that (. _1)I(—1,) + I¢.1)I1,) = I, the two equations in the previous display imply
that

- . 0 0
Acpylv) + Ao =A ( ! > I tTe=A < ; ) v,

as needed. O

F.2 Proofs and auxiliary lemmas for uniform consistency results

Proof of Proposition E.2

Proof. As in the proof to Proposition E.1, pr@(ﬁn, A d, 0%+, %f]n) = @Dga(\/ﬁﬁn, A d,A/n0%+
Vna, $,), so it suffices to show that

n—0o0

lim inf Ep [wfa(\/ﬁén,A, Vnd, " + \/ﬁx,in)] ~ 1.
! ,

Towards contradiction, suppose this is false. Then there exists an increasing sequence of

distributions P,, and sample sizes n,, such that

limsupEp,, [@Dga(«/nmﬁnm, A, \/npd, «/an}él; + /N, inm)] <1-—w, (58)

m—00

for some w > 0. Since V is compact, we can extract a subsequence m; along which Vg, —
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this holds for the original sequence m. Now, let

) € V. For ease of notation, without loss of generality we assume that

Y/m = m (ABnm —d— A(.J)(@}éb + 13))
= VA (B, = B, ) + Vi (ABp, = d = Ap(OF + 1)) (59)

and observe that
O (VB s ATy /10008 + g, ) = VS (Y, X, AS, A,

where

Y, = A (Bnm - ﬁpm) + /T (Aﬁpm —d— Ay (0 + x)) . (60)

.

~
=:A\m

Now, from Lemma C.13, there exists a constant ¢ > 0 such that n(fp, , A,d, QI%Zm +
x,5*) = c-x for n(-) defined in (31). Reformulating (31) in terms of its dual, and noting
that the dual vertices are the same as in the dual problem for 7, we see that there is a dual
vertex v;(X*) € V(X*) such that ~;(3*) <Aﬂpm —d— fl(.,l)(@}éf’n + :E)) > c-z. From Lemma
E.1, %(2*) = ¢;(2*)7;, and there is a vertex of V(3,, ) of the form v;(2,..) = ¢;(Zn. )7,
where the function ¢;(-) is continuous. Since 3, —, X*, it follows that v;(2,,) —, 7 (X*),
and hence 7;(2,,,)’ <Aﬂpm —d— A (0% + a:)) —, c-x > 0. It is then clear from (60)
that 7;(3,,.)'Ym —p 0, since the inner product of 7;(3,,) with the first term of (60)
converges in distribution to a normal distribution with mean 0 and finite variance by As-
sumption 7 and Slutksy’s lemma, and the second term converges in probability to co. Since
Vi (3, ) Y is feasible in the dual problem for 7,,,, it follows that 7, —, oo. It follows that
Pp,, (Tn,, < —C) — 0, so the modified test agrees with the unmodified test with probability
approaching 1. For simplicity, we therefore consider the unmodified test for remainder of the
proof.

Now, suppose C' > max{0, z;_,}. We showed in the proof to Lemma C.16 that if (Y, ¥) >
C, then ¢¢(V,¥) = 1 unless 0, = 4/7.57 > 0 and #(ﬁ — o) < ((C), where 7,
is an optimal solution to the dual problem and ((-) is a furfction such that {(C) — 0 as

C — o0. Additionally, by Lemma F.6, there exists some vertex v such that #(ﬁ —vlo) =
K(7e,7) (7;57 - 7’?), where k(7,7,) = 22 (7;57 - 'y’f/> > 0.

Vie Sy —7 Sy
To complete the proof, we will show that we can extract a subsequence of m, indexed by

S-18



q, along with a constant C' > max{0, z;_,} such that

1
lim sup Pp, ({ﬁnq <C}v {{&n,nq >0} A { —— (M, —V}) < C(O)}}) < w/2.
q—®0 ,1q

This implies a contradiction of (58), since the event in the probability in the previous display
is a necessary condition for the conditional test to not reject. Further, since we’ve shown

that 7, —, 00, it suffices to construct a subsequence such that

lim sup Pp, ({5,77% >0} A { A ! (g — Vi) < ((0)}) < w/2. (61)

q—0 Mg

Now, recall from Lemma E.1 that we can write V(X) = {¢1(X)1, ..., ¢;(£)7,} for positive
continuous functions ¢; and distinct non-zero vectors 74; > 0. For notational convenience,

A

let ¢;pm = ci(Xn,,), ¢

cof = ¢i(X*), Yim = CimYi, and vF = ¢f7,;. Likewise, for a pair (i,j) let
Kijm = K(Yim, Vim) and K = /f(yj‘,%’-“). Assumption 7 implies that f)nm —, X*. By the
continuous mapping theorem, we therefore have ¢; ., = ¢, Vim —p 75 and Kijm —p K-
Note that if 7;,, is optimal and ¥jA = 0, then 6,,,, = (cim¥:) AXn, A (cimYi) = 0.
Thus, we can only have ¢,,,, > 0 if the optimal vertex corresponds with an index ¢ such
that /A # 0. To establish (61), it therefore suffices to extract a subsequence ¢ such that for

any pair (z,j) with ¢ # j and /A # 0, either

lim P, (ﬁnq — %Qq?m> ~ 0, OR (62)
1izﬂ_)8;1p Pp, ({ﬁnq = %{,q?q} A {|/€z‘j,q(%‘,q — Y5q) Yal < C(C)D < w/(2m), (63)

where m is the number of such pairs (i, j).
Consider any such pair (7, 7). First, we claim that 3/, < —ﬁffl(.,l)m. To show this, note

that since 0% € S(A, Bp,,), I7 € RT-! such that A\, + Acyr = AB,, —d — A(.J)@}éﬁl -
121(.7_1)% < 0. By construction (see the proof to Lemma E.1) P‘y{fl(.,_l) =0 and 4; > 0, and
hence /(A + 121(.71):17) < 0, which implies Y\, < —ﬁ{fl(_,l)m, as desired.

Since /A, is bounded above, it follows that either i) 4/\,, — —o0, or ii) there ex-
ists a subsequence m; such that ¥/\,, — p; € R. If i) holds, then it is clear from (60)
that ~;,, % —, —, since the inner product of ~4;,, with the first term in (60) con-
verges in distribution to a normal distribution with mean 0 and finite variance by As-
sumption 9 and Slutsky’s lemma, and the second term converges in probability to —co.

Since 17),,, —, 0, it follows that P <ﬁnm = fy{mffm> — 0, s0 7, is optimal with vanish-
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ing probability. Now, suppose ii) holds and consider the sequence m;. By an analogous
argument for 7;.,, we can show that either ii.a) Vé,mlffm —, —o0 or ii.b) there exists a
further subsequence my such that ;. An, — po € R. If il.a) holds, then it is immedi-

ate that for any ¢ > 0, P ({ﬁnm2 = ’yamgffmz} A {/iij,m (Yismy — 'yjm?)’ffm? € [—C,C]}) — 0,

*
ij
Since /M, (7 — 7§)'Am, is non-stochastic, we can choose a subsequence mj such that

Vs (= 7F) Ams — pz € R U {£o0}. Then

since 7, — 9, Vi, Ym —p —0, and Kijm, — kj; > 0. Now, suppose ii.b) holds.

(%,mr) - 7j7m3)/ym3 = (%,ms - 'Yj,m3>/’\/ nm3A<Bnm3 - BPmS)

< J

=:71
+ \ Nims (%,ms - %?ky)‘ms - v Mg (7j7m3 - 7;k>/)‘m§
:?,22 =‘(Zd
+ V Mimg (%* - ’Y;),Am:a

Z4

By Assumption 9 along with Slutsky’s lemma, Z; —q (v — ) A&, for {5 ~ N (0, £¥).
Next, note that we write Zy = y/n(ci(¥,,,,) — ¢i(X¥))0An,. Since ¢; is continuous, As-
sumption 9 along with the delta method imply that \/n(c;(2,,,,) — ci(X*)) —a Gi€s, where
G; = Dyeezyci(X¥) is the gradient of ¢; at ¥*, and & ~ N (0, Vy). Since Ui\, — pu,
by Slutsky’s lemma, we have 7, —; u1Gi€s. By an analogous argument, we have that
A3 —g ugGQfg. Finally, recall that Z; — us3 by construction, and k;j ;,, — Hfj > (. Combin-
ing these results, along with the fact that these convergences hold jointly by Assumption 9,

we have that

Kijoms (Vims — Viams) Yms —a k55 (7 — 7)) As + K3 (11 Gi — p2G5) Es + K11,

where (£3,&5)" ~ N (0, V*). It is immediate that the limiting distribution in the previous
display, which we will denote by &;;, is normally distributed. We claim further that its
variance is strictly positive. Indeed, note that £z | &y is normally distributed with variance
¥ - VEVe _1VE*B’ which is positive definite by Assumption 10. Further, Assumption &
implies that (v —~7)'A # 0, and thus &;(7 — 77)'A¢s has positive variance conditional
on &s. That the unconditional variance of &;; is positive then follows from the law of total
variance. Let afj denote the unconditional variance of &;;. We then see that for any ¢ > 0,
P (&; € [—¢,¢]) < (¢/0i;) — ©(—(/04;), since the normal distribution is single-peaked and
symmetric about its mean, so the maximal probability that a normal variable falls in an

interval of length 2¢ occurs when the interval is centered around the mean. Since ((C) — 0
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as C' — o0, we can choose C sufficiently large such ®((/0;;) — ®(—(/0i;) < w/(2m). Hence,

Hm sup P (|Kijmn,, (Yims — YVims) Yimal < ¢(C)) < w/(2m).

m3—00

We have thus established that we can find a subsequence along which (62) or (63) holds
for a single pair (7, 7). However, since there are finitely many such pairs (7, j), we can use
analogous arguments to further refine our subsequence and constant C' such that this holds
for all pairs (i, 7).

O

Lemma F.6. Let (Y, %) be as defined in the proof to Proposition E.1, and vy, an optimal
solution to the dual problem for N(Y,X). Then, if v'°(Y,X) is finite,

/
~ lo 7*27* ( IRy, /~>
—ple = Y —~Y),
7 A

Ve 2V
Vi Dy~ Sy
Proof. We show in the proof to Lemma F.11 that

for some vertex v € V(X) such that > 0.

{(YEV (D) by g <0} Dy

)

where
2 .
b
Y — /]_ ES / Y

Noting that 77 = ~.Y, the result then follows from applying the expressions above and

cancelling like terms. O]

F.3 Proofs and auxiliary lemmas for uniform local asymptotic power
results
Proof of Proposition E.3

Proof. Let 71,...,74; be as defined in Lemma E.1. By Lemma F.16, there exists a value
C* € R such that for any ¥ € S and any j such that ;A4 # 0,

~

Ui
v (\/%‘(E)’AZA’%'(E)> s
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only if 7 > —C*. We suppose throughout the proof that —C' < —C™.
Towards contraction, suppose that the proposition is false. Then there exists a sequence

of distributions P,, € P. and an increasing sequence of sample sizes n,, such that

v 8| - ()

m m

lim inf

n—0o0

> w (64)

EPm lwga (Bnmv AJ d? Q’IMJ?,L +

for some w > 0. We showed in the proof to Proposition E.1 that wf;:a is invariant to scale,

so this is equivalent to

lim inf ’Epm [¢fa(«/nm3nm, A, \/Nnd, /MO + f]nm)} - p*(Pm)) > w. (65)
n—00 ’ m

Define
Y = Vi (4B, = d— A1) (6038, + 1))

and X = A(.7_1). Then

C o (Vm By Ay mdy V0O + 2,%5,,) = ¥C 0 (Y, X, A, A').

For notational convenience, define 7, := 7p,; define é,,, ;" and X, analogously. Let
Yo 1= Yo—A( 1)L (1,98 (TP — 0P post+ 08 post)- By Lemma 16 in ARP, ¢ (Y, X, AY, A') =

f,a(ffm? X, A%, A'). Additionally, recall from the proof of Lemma C.7 that 6% = I'(7p +
OpPpost — Opimost). From this, we see that
Y/m = A/ Nm (ABnm —d— A(J)@}éﬁl — A(.7_1)F(_17‘) (Tpm — 5Pm,post + 5;;:1,post)) — A(.J)f
= /"t (ABnm —d = Al (T, + Oppost = 05 post) = AL (1) (T, = Op, post + 5;Z,post))
— 121(.71)[[

~ 0 ~
= A/ Nm (Aﬁnm —d—-A ( I ) (TPm + 5Pm,P05t - 5;1,1)0%)) - A(.71)£L',

where the last line follows from Lemma F.5. Additionally, note that by construction,

Prmpre-

0

0

TP

m

Yy = /I A (Bnm —0p,, — ( )) + /i (A0 —d) — Ay (66)
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Now, since P, € P., by definition there exists an index B,, such that

Ay )08 —dp, =0

A(_Bm7.)5;;j; — d,Bm <€,

and Ap, post has rank |B,,|. Since there are finitely many possible subindices of the rows
of A, we can choose a subsequence m; such that B,,, = B for some index B such that
Ap post has rank |B|. Additionally, since S is compact, we can choose a further subsequence
my along which ¥p =~ — ¥* for some ¥* € S. To avoid notational clutter, we will assume
that these convergences hold for the original sequence (m, n,,). Additionally, without loss of

generality, we will assume that B corresponds with the first |B| rows of A. It follows that

i Ay
Vit (A = d) — A e = ( - (B1) )

(-5.)08, —d-p) = A2

< —A(B{)x ’
—/Nm€ — A_p1)x

from which it is apparent that

—A(B 1).%‘

Vi (463 —d) — Ay — ( ’ ) — [

—00

as m — 0. Now, equation (66) along with Assumptions 5 and 7 and the continous mapping

theorem imply that
(Yfma ZA:m) —d (f + i, E*)a

for £ ~ N (0, AX*A).
Now, as in the proof to Proposition E.1, note that the (unmodified) conditional test
rejects iff p(Y,X) > 1 — «a for

p(Y,E) =P (¢ < Y. D) ¢ € [o(Y.£), 0" (Y, E)],¢ ~ N (0, 03 (Y. X)) > 1 — .

It follows that the modified conditional test rejects iff p(Y, X) := p(Y, X)-1[7(Y, X) = —C] >
1 — a. Thus, (65) implies that

lim inf ‘Ppm (ﬁ(Ym, ) > 1— a) - p*(Pm)’ > w.

n—0o0

Additionally, Proposition 4.2 implies that for all m, p*(P,,) = ®(c*r — 21_,), where ¢* =
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—Y5AB1) /0B, for op = \/f’ygA(B7.)ZA’(B VB and g the unique vector such that Y5 Ap 1) =
0,78 = 0,[|75/| = 1. Thus,

lim inf [Pp,, (ﬁ(ffm, S) > 1— a)) — Bt — 21)| > w. (67)

n—0o0

However, Lemma F.14 gives that p(Y,X) is continuous at (£ + i, ¥X*) for almost every
&~ N (0, AX*A"), and so from the continuous mapping theorem,

Additionally, Lemma F.15 gives that the distribution of p(§ + fi, X*) is continuous at 1 — «,
and thus

P%<ﬂﬁmiﬁ>l—a>HP@@+QZS>1—ay

Lemma F.12 implies that with probability 1,

plE M’Z*):q)( () (€ + i) )

V7 (B*) AD* Al (5%)

where v;(X*) = ¢;(X)7; for 4; the unique element of {%;,...,7,} such that 7, _p = 0. Ad-
ditionally, Lemma F.9 gives that with probability 1, 9(§ + g, X*) = v;(X*)' (£ + ). Since

—-C < -C* & il > 1—a only if ) > —C, from which we see
A/ (%) AD* Al (%)

that P(p(€ + 1, %) > 1 —a) = P(p(§ + 1, %) > 1 — «) . It follows from the expression for

p(€ + 1, 2*) in the previous display that with probability 1, p(§ + i, X*) > 1 — « iff

e e
/7 (2%) AS* Al (5%) © (S AT Ay (B7)

The term on the left-hand side has the standard normal distribution, and thus

. B %’(E*)/ﬂ -z
Pp+ X)) >1-a)=> <\/%(Z*)’AZ*A/%'<E*) 1a> |

Next, note that by definition v;(X*) = ¢;(£*)%,, where by construction ¥, _p = 0. Fur-
ther, from Lemma F.7, ¥, 5 is equal to the vector 75 defined above (i.e. the unique vector
satisfying the unique vector such that 5 Az 1) = 0,75 = 0,[|75|| = 1). Tt is then immediate
from the previous display and the fact that g = —A(BJ):U that

Pp+pX)>1—a)=0 (" — 21-4).
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But this implies that

lim inf ’Ppm (p(ffm, $,) > 1 a) CB(c*r— z_a)| = 0,

n—0o0
which contradicts (67). O

Lemma F.7. Suppose Assumption J holds. Let B = B(d**) be the index of the binding
moments. Let 41, ...,7; be as defined in Lemma E.1. Then 7;_p = 0 for exactly one j €

{1,...,J}. Additionally, 7;A # 0, and 7; p is the unique vector in the set {yp : YpAB 1) =
0,78 = 0, |75l = 1}.

Proof. We first show that there can be at most one 7; such that 4; _p = 0. Recall from
the proof to Lemma E.1 that for all j, ﬁé[l(.,,l) = 0,7 = 0 and ||9]| = 1. Thus, if
Y- = 0, we have 7} A 1) = 0. However, from Lemma C.7, the set {5 : ¥'Ap,_1) =
0} = {7} | c € R} for some non-zero vector 73 = 0. Thus, there is a single vector in the
set {v8 : YgAm._1) = 0,78 = 0,[|ys|| = 1}. In particular, its lone element is c*~%, for
c* = 1/||vEll- Hence, if there is such a 7;, it has ¢*v} in the positions corresponding with B
and zeros otherwise.

It thus remains to show that the vector with c¢*v5 in the positions corresponding with B
and zeros otherwise is in the set {71, ..., 7;}. Denote this vector v*. Note that by construction,
7*’[1(.7_1) = 0. Thus, for any ¥ positive definite, (v*5) " 'y* € F(X) = {v : 7’[1(.7_1) =
0,7’ = 1}. Moreover, (v*'&)~'y* must be the unique vector in F(X) with y_5 = 0, since
as discussed above, {75 : '7’141(3’,1) = 0} = {¢v5|c € R} and so there is a unique vector

with 73A. 1) = 0,7 = 0, and 76 = 1. Let v be the vector with -1 in the positions

corresponding with —B and zeros otherwise. Then v/(7*5)~!v* = 0, whereas vy < 0 for

any other v € F(X), since every v € F(X) satisfies v > 0 and y_p # 0. Thus, (7¥5)"'v* is
a minimal face of F/(X), and hence a vertex (see Schrijver (1986), Section 8.5). By Lemma
E.1l, F(X) = {e:(E)M, .., ()7} where ¢; > 0. It follows that (v*d) 1y* = ¢;(X)7; for
some 7, so y* is a constant multiple of ;. However, since by construction * and %, are both
positive and have a norm of 1, they must be equal, which gives the first result.

Next, note that we showed in the proof to Lemma C.7 that v} ~(37.) = ¢/. Since Az, =

0
A, ( / I~! and I'"! is full rank, it follows that v A, # 0. Since 3,5 = ¢*vj and

Vj—5 = 0, we have that 7/ A = c¢*ygAp,) # 0, which gives the second result.
O

Lemma F.8. Let i and ¥* be as defined in the proof to Proposition E.5. Let V(Y,Z) =

arg maxX, ey (x) v'Y. By Lemma F.7, there is a unique index j such that 3;_p = 0. Then for
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almost every & ~ N (0, AS*A), there is a neighborhood of (€ + i, 5*) such that V(V,%) =
cj(X)7; for almost every & ~ N (0, AX*A).

Proof. Without loss of generality, suppose that 7; _p = 0. Lemma E.1 implies that

N(Y,¥) := max 7Y = max{c,(X)VY,...,c;(X)¥ Y},
7eV (%)

where the functions ¢;(X) are continuous. Each of the elements of the max are continuous
functions of (Y, ) in a neighborhood of (£ + 1, ¥*) by an argument analogous to that in the
proof to Lemma F.2 (replacing p* with 1). Note, however, that ¥ (a+¢&) = ﬂ’B(fBjL;l(B,l)x),
which is finite with probability 1. On the other hand, for j > 1, ¥j(§ + 1) = —oo, since
7; = 0 and has at least one strictly positive element in the index —B, and pu_p = —o0. Since
¢j(¥*) > 0 for all j by Lemma F.1, it follows that c;(3X*)% (£ + 1) > ¢;(X%)7;(§ + ) for all
j > 2. Since the functions on both sides of the inequality are continuous at (£ + i, 32*), this
implies that ¢;(2)¥]Y > ¢;(£)7;Y in a neighborhood of (§ + fi, ¥*), which gives the desired
result.

O

Lemma F.9. Let i and ¥* be as defined in the proof to Proposition E.3. Let n(Y,¥) =
maxyey(s)Y'Y . Then for almost every & ~ N (0, AX*A"), n(Y,X) is continuous at (§+f, £*).
Further, there is a neighborhood of (§ + i, %*) such that (Y, %) = ¢;(X)7;Y, where j is the

unique index such that 3;_p = 0 (which exists by Lemma F.7).
Proof. Follows immediately from the proof to Lemma F.8. O

Lemma F.10. Let i and ¥* be as defined in the proof to Proposition E.5. Then for al-
most every & ~ N (0, AX*A'), a2(Y,X) is continuous at (§ + [i,X*). Further, there is a
neighborhood of (§ + fi, ¥*) such that 0,(Y,X) = ¢;(X)*7;AXA'3; > 0.

Proof. By Lemma .7, there is a unique index j such that 4; _p = 0, and this 7; satisfies
;A # 0. Lemma F.8 implies that V(Y,%) = ¢;(¥)7, in a neighborhood of (£ + i, X*).
Thus, in that neighborhood, 62(Y, %) = ¢;(X)*7;AXAy;, which is clearly continuous in X.
Additionally, ¢;(¥*) > 0 by Lemma F.1, and ¥* is positive definite, so &727(5 + [, %) =
cj(E*)%;-AZ*A"’yj > 0. Since &,27 is continuous at (£ + fi, 2*), it is also positive in a neigh-

borhood of (£ + [, X%). O

Lemma F.11. Let ji and X* be as defined in the proof to Proposition E.5. Then for almost
every £ ~ N (0, AX*A'), v'°(E+ 1, B*) = —o0, v*P(£ + [i, %) = o0, and the functions v'° and

v are continuous at (§ + [, ).
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Proof. By Lemma I.7, there is a unique index j such that 7, _p = 0, and this 7; satisfies
¥;A # 0. Without loss of generality, assume this holds for j = 1. Lemmas I.8 and I.10 then
imply that V(Y,X) = ¢;(X)% and 62(Y,¥) > 0 in a neighborhood of (¢ + jz, £*).

The proof of the continuity of v! and v"P is then similar to that in Lemma F.2. Let
7:(2) = ¢1(X)¥;. For ease of notation, we will make the dependence of v, on ¥ implicit where
it is clear below. Since in a neighborhood of (¢ + /1, X*), 67(Y, ¥) > 0 and V(Y,2) = {1.(2)},
in that neighborhood v'°(Y,Y) is the minimum of the set

DYy
C={c: 1S, (V.2
om0 ( Y H%E%C)}’

for

SV,
S, (V%) = ([_ i 7*) v
Vi 2V

Rearranging terms, we see that

C={c:0= max a,., vy + by, nc},
1eV(X)

where a., ., vy = 7'S,,(Y) and b, ., 5 : — 1. Note that a, 1,y = 0 = by, ,, S0

/
0 < maxXyey () y,yy,y + by c for all c. Morgg\iZT for ¢ = 7Y, the max is attained at -, by
construction. Hence, the set C' is non-empty.

Intuitively, if we plot a., vx + by,» as a function of ¢, then each v € V(X) defines
a line, and the set C' represents the values of ¢ for which 0 is the upper envelope of this
set. It follows that the lower bound of C'is the maximal x-intercept of the lines of the form

G”Y:’Y*:sz + b’Y»’Y*yzc Wlth b777*72 < O' Hence7

TGy YT

(Y, %) = max
{reV(EN {74} by 74,2 <0} b

VY2

Now, let Vux = 74(X*). Observe that for any v € V(X%)\Vux,

Since v_p < 0 and has at least one strictly positive element, /(€ + 1) = —co with probability

x* H% :k* _ ’ _ e *% g _
N (I—L) (64 ) = /(6 + ) — L2 (e 4 ).

1. On the other hand, v, 5 = 0, and so v, (£ + 1) is finite with probability one. It follows
that a, ., e+as+ = —00 with probability 1. Hence, v'°(§ + i, £*) = —c0.

Next, recall that by Lemma E.1, V(X) = {m(X),...,7s(2)}, where v;(X) = ¢;(£)7;
and ¢;(X) is continuous. Additionally, we showed in the proof to Lemma F.8 that for all

J» ¢j(X)7;Y is continuous at (£ + i, ¥*). It is then immediate from the definitions of the
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functions a, ., v and b, ., = that for all j, a,,(5).(2),v,z and by, (s) (), are continuous in
(Y, %) as well. Without loss of generality, suppose that for 2 < k < ki, by, (5%) 7, (n#%), 5% < 0;
for by < k < ko, by s#)ye(z)nx = 0; and for & > ky, by, (5%) 4, (z#)5+ > 0. From the
continuity of b, (s, (x)x, it is clear that in a neighborhood of (§ + p*,X%), by, (£) yu(z)z > 0
for all 2 < k < ky and by, (5))4,.(x),2 < 0 for all k > k;. Hence, in this neighborhood,

"0y (2) 7% (2),Y.E T Oy (2), Y2

(Y, %) = max{ max ’ , max —} : (68)

w@Dz<h<k by pms V@) byaum)x

where
VOE) = {m(X) : k1 <k < ko, by (m)nmx < 0}

and we define the max of an empty set to be —oo. It is clear from the continuity of the
functions @ and b that the inner max on the left side of (68) is continuous and converges
to —oo. To show that v is continuous at (£ + 1, ¥*), it thus suffices to show that for any
sequence (Y,X) — (£ + 1, 2*), the max on the right hand side of (68) converges to —oo.
To do this, note that by construction b, (s#) ., x#) s+ = 0 for k € (ki, k2], and so along any
sequence (Y, ) — (£ + 1, %), by, (5),45(x),5 — 0 since b is continuous in (Y, X). Additionally,
since a is continuous, along such a sequence, ., (s),(2),Y,5 = Gy, (5%) 75 (5#)t+p,x = —00. For
values of (Y, X) where by, (5)) v, (x),5 > 0, it follows that —a, () 4.(2),v,5/0y ()45 (), becomes
arbitrarily negative, whereas for values of (Y, ) where b, (s +,(x)x = 0, ¥ is not included
in V0. It is then immediate that the max on the right hand side of (68) converges to —oo,
which suffices to establish the continuity of v at (¢ + i, ¥*). The continuity of v* can be
shown analogously.

O

Lemma F.12. Let i and ¥* be as defined in the proof to Proposition E.3. Define p(Y, %) as

in Lemma F.3. Then for almost every & ~ N (0, AX*A"), p(Y,X) is continuous at (§+fi, %),
% () (€ + i)

VY (B*) AT Ay (3%) )

v;8 = 0 (which exists by Lemma F.7).

and p(§ + @, 2*) = & where j is the unique index such that

Proof. Lemmas F.9 to F.11 imply that for almost every &, 7(Y, ), J%(Y, ¥), v'°(Y, %) and

v"P(Y, X)) are continuous at (§+/1, X*), and when evaluated at (§+, X%), ) = ¢;(X*)7;(§+q1),
52

o, = cj(Z*)Q%AZA’Wj > 0, v = —oo, and v"? = o0. Thus, 6, > 0 and v < v"P in a

neighborhood of (£ + jz, X*). When 67 > 0 and 0" < v"?,

(7/6,) = B(v"/5,)
p(Y;%) = (07 /6,) — (v'/6y)
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which is clearly continuous in 7, v',v*?, and 6, including when v = —c0 and v"? = .

o

The continuity of p(Y, ) thus follows from the continuity of 7, v
Additionally, when evaluated at (Y,¥) = (£ + [, 2*), we have

w .
;0P and o).

P ( 7j<2*)/(§ + /1) > B CI)(—OO)
V7 (5) AT Al (3%) _ v (X*)(§ + 1)
®(c0) — P(—00) i (S AT Ay (2% )

p(Y,¥) =

O

Lemma F.13. Let i and X* be as defined in the proof to Proposition E.3. For any C € R,
the function 1[7(Y,X) = —C1 is continuous at (§+fi, X*) for almost every & ~ N (0, AX*A).

Proof. By Lemma F.9, for almost every &, the function 7(Y,X) is continuous at (£ + fi, 2*).
It thus suffices to show that for almost every &, N(§ + i, ¥*) # —C. Lemma F.9 gives
that N(¢ + 1, ¥*) = ¢;(X*)7;(§ + 1) where 7; is the unique element of {¥;,...,7,} such that
Y~ = 0. Thus, 7(§ + i1, X*) = —C only if ¢;(¥*)7;§ = —C — ¢;(¥*)7;f1, where the right-
hand side of the previous equation is finite since jip is finite and 7; _p = 0. Observe further
that ¢;(3*)7¢ is normally distributed with variance ¢;(3*)*7;AX*A'y; > 0. Since ¢;(X*)7}¢
is continuously distributed, it follows that c;(3X*)¥;§ = —C — ¢;(¥*)¥}ii with probability

zero, which suffices for the result. n

Lemma F.14. Let i and X* be as defined in the proof to Proposition E.5. Let the function
p(Y,X) be as defined in Lemma F.12. For any C € R, the function p(Y,%) := p(Y, %) -
1Y, X) = =C] is continuous at (§ + 1, %) for almost every & ~ N (0, AX*A).

Proof. Follows immediately from Lemmas F.12 and F.13 and the fact that the product of

continuous functions is continuous. OJ

Lemma F.15. Let i and ¥* be as defined in the proof to Proposition E.3 and p(Y,X) as
defined in Lemma F.1}. For & ~ N (0, AX*A"), p(& + i1, %) = 1 — a with probability 0.

Proof. Note that p(Y,Y) := p(Y,X)1[7(Y,X) = —C] can equal 1 — « only if 1[7(Y,X) >
—C| =Tland p(Y,Y) = 1—a. It thus suffices to show that p({+f, £*) = 1—a with probability
u(EY(E+ ) )
V(B AT A, (3%) )
where v;(X*) := ¢;(£*)7; and 7; is the unique element of {%1,...,7,} such that 7; 5 = 0.
Thus, p(§ + i, %) = 1 — a iff 7;(S*)€ = 21-04/7;(Z*) AZ* Ay (3*) — ;(X*)'i. However,
we showed in the proof to Lemma F.13 that ;(X*)¢ is continuously distributed, and thus

zero. From Lemma F.12 for almost every &, p(§ + i, X*) = @

this occurs with probability 0. O
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Lemma F.16. Let 71, ...,7, be as defined in Lemma E.1, and v;(X) := ¢;(X)7;. There exists
a value C* € R such that for any ¥ € S and any j such that 7;A # 0,

U
v (\/’Yj@)'AEA’%'(E)> sl

only if n > C*.

Proof. Observe that

U
(\/’YJ AZA/%( )) Zioe

iff

N> z1_ a\/% JAY Al (2).

If 2y, = 0, then the lower bound in the previous display is weakly greater than zero.
On the other hand if z;_, < 0, then the lower bound is weakly greater than z;_, times the
maximum possible value of 4/7;(X)’AX A’y;(X). Note, however, that 4/v;(Z)AXA;(X) =

cj(X)?7;AXA"y; by Lemma E.1. By Lemma F.1, ¢;(¥) < ¢. Additionally, since the set
{71,.-.,7s} is finite, max; ||7;A[? is finite. It then follows from Lemma F.1 that 7] AXA'y; <
Amax; ||7/A|> < 0, and so we obtain a finite upper bound on 1/7;(X)’ AXA’y;(X), which

suffices for the result.
O

Proof of Proposition E.4

Proof. We first claim that the function m(5) = Af is a maximal invariant of the group
G. Since by definition Av = 0 for any v € AL, it is immediate that m(8) = m(g,3)
for any ¢, € G. To show that m is a maximal invariant, consider 3; and [, such that
m(B1) = m(B2). Then A(B; — f2) = 0 and hence (8, — 32) € AL. From this we see that
B = B2+ (B1— B2) = g(s—p)(B2), and thus m(3) is a maximal invariant. Note further that
APy = ABy iff APy + h = ABs + h for any constant vector h, and so the same argument
applies to show that m,(8) = AB + h, is maximal for any h,. It follows from Theorem 1
in Lehmann (1986, p. 285) that C, can be written as a function of (m,(3), ) only, so that
Cr(\/12Bn,30) = Co(min(v/1Bn), 3y). From Lemma C.7, there exists a vector 7 such that

ApyBpr —dp — A1y — AT =0 (69)
A(—B,~)BP* — d_B — A(_BJ)QIUDZL — A(_BJ)% = —e<0. (70)
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We set the constant h,, = —v/n[d — A 1)0% — 121(‘7_1)7‘], so that C is a function of Y, :=
\/E[Aﬁn —d— 121(.71)9“[7 — 121(.7_1)%] and in
Observe that
Y = VnA(B — Bpx) — /n[ABpx —d — A _17].

It follows immediately from (69) and (70) that /n[ABpx —d — A(_1)7] — fi, where i = 0
and fi_p = —o0. Since by assumption v/n(3, — fps) —q4 N (0, £*) under P*, the continuous
mapping theorem along with Slutsky’s lemma imply that Y, P—*>d E+pfor & ~ N (0, AZ*A").

Similarly, suppose Bp, = [Bpx + \/LE(B — Bpx) for some fixed 3. Suppose further that
Vi(Ba — Bp,) 224 N (0, £*). Observe that

Y, = VRA(B — Bp,) + A(B — Bpx) — V/n[ABps —d — A _ny7].
Thus, Y, 54 € + A(B — Bps) + fi.

-
be the set of values 8 consistent with § = 6, and BF(0) = {8 : It st. 't = 0, A58 —

_ ~ 0
Now, as in Lemma C.12, let By(f) := {8 : It st. 't = 0,Ap—d— A ) < 0}

0 .
dp — A, ( ) < 0} be the analogous set using only the moments B. Suppose that § €
T
BP (6% +z). We claim that for n sufficiently large, 3, := Bp= + \%(5 — Bp=) € By (0" + \/iﬁx)
It follows from the definition of BE (8> + z) and the construction of the matrix A that there
exists 7 such that A(B,.)[? —dp — 21(3,1)(9}3@ +x) — 121(37,1)% < 0. This, combined with (69),
implies that

~ 1 1

1 . o
—l’) — A(B’_l)((l — —)7' + —T) <0.

A,yBn —dp — A(B,l)(e}él; + Jn

However, from (70), it follows that

_ 1 _
Ap)Bn—d-p —ALp1)(08 + \/—ﬁx) —Acpy((1 -
1 1

\/_ﬁ)(_e) + \/_ﬁ (%1(_,97.)6~ —dp — 121(_3,1)(91“31Zk +1z)— A(—B,l)ﬂ )

which is negative for n sufficiently large since —e < 0. The previous two displays imply that

(1-

for n sufficiently large, 3, € By(0'% + \/Lﬁx), as we desired to show. Hence, for n sufficiently

0
large, there exists §,, € A and 7, such that 5, =9, + (
Tn

) and I't, = 6" + \/iﬁx

Now, let ¢, (Y, f]n) = 1[0%. + \/Lﬁx e Cp(Yy, in)] It follows from the previous paragraph
along with the assumptions of the proposition that for any sequence P, such that \/E(Bn —

S-31



Bp,) ﬁw N (0, %), 3, ﬁp ¥* and fp, = Bpx + \/LE(B — Bpx) for B e BE (0%, + x), we
have that

lim sSup EPn [@n(Yna ZA]n)] S .

n—o0

It then follows from Theorem 1 in Miiller (2011) that

lim sup E p= [gpn(Yn,f]n)] < p,

n—0o0

for p the power of the most powerful test between
Hy: B eBE@" +z)vs. Hy: = Bps

given a single observation Y ~ N ([L + A(B — Bpx), AZ*A’>.35 Since p_p = —0, Y. =

—oo with probability 1 under both the null and alternative, so it suffices to consider tests of H,

vs H; given an observation Yz ~ N (ﬂB + A(B,~)(B — Bp*), A(Bj.)E*A’(B7,)>. Recalling that

i1 = 0 by construction, we see that p is the power of the most powerful test between Hy : 1 €

My = {Ap.)(B—Bps) + BeBE@OS +2)} and Hy : ji = 0 given Y ~ N (M, A(B7.)E*A’(B’_)>.
Now, it follows from the proof to Lemma C.12 that

By (0ps +x) = {8 : V5 (A(B,->5 —dp — Ay (p + l’)) < 0},
for 45 the unique vector such that 5 Ap 1) = 0, 75 = 0, ||75|| = 1. This, combined with
(69) and the fact that 3/ Az _1) = 0, implies that BY (014 +2) = {8 : ¥y (Ag(B = Bps)) <
Yy Apyr}. Tt is then immediate that My € {v : v < Y3 A(p1z}. Additionally, since dps
satisfies Assumption 4, A(p.) has rank B, and thus its image is RIBl. This implies inclusion

in the opposite direction, and hence My = {v : v < YgApnz}. It then follows from

Lemma C.11 that p = & (—W%A(BJ)QU/OE - zl_a), for o}, = \/7§3A(B,-)E*AI(B7.)WB- This

accords with the formula for p*(P*, x) given in Proposition 4.2, which completes the proof.
]

G Additional Simulation Results

This section contains additional simulation results that complement the simulations pre-
sented in the main text. Section G.1 describes the computation of the optimal bound

for expected excess length. Section .2 contains additional results from the normal data-

35See also Section 3.2 of Miiller (2011) on applying Theorem 1 to invariant tests.
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generating process considered in the main text. Section G.3 presents results from a non-

normal data-generating process in which the covariance matrix is estimated from the data.

G.1 Optimal bounds on excess length

We now discuss the computation of optimal bounds on the excess length of confidence in-
tervals that satisfy the uniform coverage requirement (10). In Section 5, we benchmark the
performance of our proposed procedures in Monte Carlo simulations relative to these bounds.

The following result restates Theorem 3.2 of Armstrong and Kolesar (2018) in the nota-
tion of our paper, which provides a formula for the optimal expected length of a confidence

set that satisfies the uniform coverage requirement.

Lemma G.1. Suppose that A is convex. Let I, denote the set of confidence sets that satisfy

the coverage requirement (10). Then, for any 64 € A and 74 € RT,

00 B, a5 MO = (1~ )E[B(o10 — 2) ~ (510~ 2)| Z < 21.a].

where Z ~ N (0, 1), z1_4 is the 1 — « quantile of Z, and

@(b) ;= sup{l't |7 e RT, 36 € A s.t. |6 + Myor — Bal3, < b%}
wb) ;== inf{lI'T|7eRT, 36 € A s.t. |6 + Mpoey7 — Bal3, < b7},

for Ba := 64 + Mpos7a, and ||z||s = 2’3712

The proof of this result follows from observing that the confidence set that optimally
directs power against (§4,74) inverts Neyman-Pearson tests of Hy : § € A, = 0 against
Hy : (0,7) = (0a,74) for each value 6. The formulas above are then obtained by integrating
one minus the power function of these tests over §. By the same argument, the optimal excess
length for confidence sets that control size is the integral of one minus the power function
over all points # outside of the identified set. Additionally, for any value # € S(A, 34), the
null and alternative hypotheses are observationally equivalent, and so the most powerful
test trivially has size a. It follows that the lowest achievable expected excess length is
(1 —a) - LID(A,04 ) shorter than the lowest achievable expected length, where as in
Section 3, LID denotes the length of the identified set.

Corollary G.1. Under the conditions of Lemma G.1,

nf By [EL(C;04,74)] = inf By, ry ) [MC)] = (1= @) LID(A, O pre).
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G.2 Additional Results for Normal Simulations

In the main text, we report efficiency in terms of excess length for the parameter 6 = 7
for ASP (M), ASPPB(M), ASPEM (M) and ARM(M). In this section, we provide additional

simulation results.

Alternative choices of M for ASPEM (M) and ARM(M). The main text reports effi-
ciency in terms of excess length over ASPEM (M) and AFM (M) for M = 1. We now report
additional results for M = 1,2,3. The results are qualitatively similarly, suggesting that
the choice of M does not appear to have a large effect on the performance of our proposed

procedures.

Figure I1: ASPEM (D) and ARM(M): Median efficiency ratios for proposed procedures when
0 = 7 as M varies.
ASPRM(M), 0 = A=AMM), 6 =14

1.00- 1.00-

pel Ke]
I ®
£ 0.75- £ 0.75-
=4 =)
s c
3 g
a »
$ 0.50- 2 0.50-
Q o
3 X
© o
< c
% 0.25- % 0.25- - 1 —e— C-LF Hybrid
% § - 2 -4 Conditional
- 3
0.00- 0.00
0 1 2 3 0 1 2 3
5.1/01 8.4/
Note: This figure shows the median efficiency ratio for our proposed confidence sets for # = 7, over

ASPEM (AN ABM (M) and M = 1,2,3. The efficiency ratio for a procedure is defined as the excess length
bound divided by the procedure’s expected excess length. The results for M = 1 are plotted in red, M = 2
are plotted in blue, and M = 3 are plotted in green. The results for the conditional-least favorable confidence
set (“LF Hybrid”) are plotted in the solid line with circles. The results for the conditional confidence set
are plotted in the dashed line with triangles. Results are averaged over 1000 simulations for each of the 12
papers surveyed, and the median across papers is reported here.

Alternative choice of target parameter. The main text reports efficiency in terms of
excess length for the parameter # = 71. We now report additional results using the average
of post-period treatment effects, 8 = 7,05, as the target parameter.

Figure 12 plots the efficiency results for § = 7, over AP (M) and ASPPB(M). As in
the main text, we conduct these simulations under the assumption of parallel trends and

zero treatment effects (i.e., § = 0), reporting results as M /oy varies.
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Figure 12: Median efficiency ratios for AP (M) and ASPFB(M) when 0 = 7.
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Note: This figure shows the median efficiency ratios for our proposed confidence sets for ASP (M) and
ASPPB(N) when 6 = 7,05. The efficiency ratio for a procedure is defined as the optimal bound divided
by the procedure’s expected excess length. The results for the FLCI are plotted in purple, the results for
the conditional-FLCI (“C-F Hybrid”) confidence interval in red, the results for the conditional-LF (“C-LF
Hybrid”) hybrid in blue and the results for the conditional confidence interval in green. Results are averaged
over 1000 simulations for each of the 12 papers surveyed, and the median across papers is reported here.

Figure 13 plots the efficiency results for 6 = 7,0 over ASPEM(N[) and ARM(M). As in
the main text, we conduct these simulations under the assumption of zero treatment effects
and a “pulse” pre-trend (i.e., f_; = d_; and 5; = 0 for all ¢ # —1), reporting results for

M =1overd_i/o; =0,1,2,3.5

36We note that over ASPEM ()[) the median efficiency ratio for our proposed confidence sets is larger than
one for M = 3. For M = 3, the length of the identified set for § = Tpost can be quite large when there are
many post-treatment periods (e.g., as mentioned in the main text, 5 papers in the survey have 7' > 10), and
so this behavior occurs due to computational constraints on the grid size for the underlying test inversion.
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Figure 13: Median efficiency ratios for ASPEM(Af) and AFM (M) when 0 = T4
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Note: This figure shows the median efficiency ratios for our proposed confidence sets for ASPEM (M) and
ARM (M) when 6 = Tpps; and M = 1. The efficiency ratio for a procedure is defined as the optimal bound
divided by the procedure’s expected excess length. The results for the conditional-least favorable (“C-LF”)
hybrid in blue and the results for the conditional confidence interval in green. Results are averaged over
1000 simulations for each of the 12 papers surveyed, and the median across papers is reported here.
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(.3 Non-normal simulation results with estimated covariance ma-
trix

In the main text, we presented simulations results where B is normally distributed and its
covariance matrix is treated as known. In this section, we present Monte Carlo results using
a data-generating process in which B is not normally distributed and the covariance matrix
is estimated from the data. Specifically, we consider simulations based on the empirical
distribution in Bailey and Goodman-Bacon (2015). We find that all of our procedures achieve
(approximate) size control, and our results on the relative power of the various procedures

are quite similar to those presented in the main text.

G.3.1 Simulation design

The simulations are calibrated using the empirical distribution of the data in Bailey and
Goodman-Bacon (2015).>" Let B , 3 denote the original, estimated event-study coefficients
and variance-covariance matrix from the event-study regression in the paper. We simulate
data using a clustered bootstrap sampling scheme at the county level (i.e. the level of
clustering used by the authors in their event-study regression). For each bootstrap sample
b, we re-estimate the event-study coefficients Bb and the variance-covariance matrix 3, also
using the clustering scheme specified by the authors. We then re-center the bootstrapped
coefficient so that under our simulated data-generating process either parallel trends holds
(i.e., B,fe"te”d = Bb—B) or the “pulse” pre-trend holds (i.e., Bg@”tered = B,—B+8_1xe_; where
e_y is the (T + T)-dimensional vector with one in t = —1 entry and zeroes everywhere else).
We construct our proposed confidence sets for bootstrap draw b using the pair (Bgente”ed, i]b)

As in the main text, we focus on the performance of our proposed confidence sets for
ASP(M), ASPPB(M) under parallel trends and ASPEM(A) AFM(DM) under the “pulse”
pre-trend. The parameter of interest in these simulations is the causal effect in the first
post-period (§ = 7). For ASP(M) and ASPPB(M), we report the performance of the FLCI,
conditional confidence set, conditional-FLCI hybrid confidence set, and conditional-least
favorable confidence set. For ASPEM (N[} and ARM (M), we report the performance of the
conditional confidence set and the conditional-least favorable confidence set. All results are

averaged over 1000 bootstrap samples.

37Since implementing the bootstrap in practice is logistically challenging, we do so for one paper rather
than the full 12 papers in the survey. We chose the first paper alphabetically to minimize concerns about
cherry-picking.
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G.3.2 Size control simulations

Table 2 reports the maximum rejection rate of each procedure over a grid of parameter values
6 within the identified set S(8,A) for A = ASP(M) and A = ASPPB(M) under parallel
trends (i.e., § = 0). We report results for M /oy = 0,1,2,3,4,5. The table shows that all our
procedures approximately control size, with null rejection rates never substantially exceeding

the nominal rate of 0.05.

A M /oy Conditional FLCI C-F Hybrid C-LF Hybrid

ASD(M)
0 0.073 0.078 0.083 0.069
1 0.046 0.061 0.046 0.044
2 0.038 0.072 0.038 0.037
3 0.040 0.072 0.040 0.038
4 0.049 0.072 0.051 0.045
5 0.059 0.072 0.061 0.051

ASDPB(M)
0 0.079 0.078 0.084 0.074
1 0.052 0.047 0.048 0.048
2 0.046 0.055 0.043 0.042
3 0.051 0.058 0.045 0.046
4 0.055 0.058 0.051 0.051
5 0.059 0.058 0.057 0.057

Table 2: Maximum null rejection probability over the identified set S(3, A) for A = AP (M)
and A = ASPPB( M) under parallel trends (i.e., 8 = 0) using the empirical distribution from
Bailey and Goodman-Bacon (2015).

Table 3 reports the maximum rejection rate of the conditional test and the conditional-
least favorable test over a grid of parameter values 6 within the identified set S(5,A) for
A = ASPEM (N and A = ARM (M) under the “pulse” pre-trend (i.e., -1 = §_; and 8; = 0
for all t # —1). We report results for M = 1 and §_;/0; = 1,2,3. The table shows that all

our procedures control size, and are conservative for these choices of A.

G.3.3 Comparison with normal simulations

We next compare results from the non-normal simulations with estimated covariance dis-
cussed above to the normal model simulations the main text, in which /3 is normal and ¥ is
treated as known.

Figures [4-15 shows the rejection probabilities at different values of the parameter 6 using
both simulation methods for ASP (M), ASPPB(M) at M /oy = 0,5 respectively. The results

are quite similar for all values of M /oy considered, and we thus omit the intermediate values.
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A d_1/01 Conditional C-LF Hybrid

ASDEM ()
1 0.009 0.008
2 0.037 0.035
3 0.058 0.054
ARM(M)
1 0.005 0.005
0.017 0.016
3 0.024 0.023

Table 3: Maximum null rejection probability over the identified set S(8,A) for A =
ASPEM (N and A = AFM(M) under the “pulse” pre-trend (ie., 3.1 = 6_; and B, = 0
for all t # —1) and M = 1 using the empirical distribution from Bailey and Goodman-Bacon
(2015). We report results for _; /o1 = 1,2, 3.

The estimated average rejection rates of each procedure are quite similar in the non-normal
simulations and the normal simulations across each choice of A. As a result, the relative
rankings of the procedures in terms of power are the same in the non-normal simulations
as in the normal simulations discussed in the main text. Similarly, Figures [6-17 shows the
rejection probabilities at different values of the parameter 6 using both simulation methods
for ASPEM (ALY ABM (M) at 6_1 /0y = 1,3 respectively and M = 1.
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Figure [4: Comparison of rejection probabilities using bootstrap and normal simulations.
Results are shown for § = 71, and each choice of A = AP (M), ASPPB(M), and M /oy = 0.
The average rejection rate for the non-normal simulations are in red and the average rejection
rate for the normal simulations are in blue; the dashed black lines indicate the identified set
bounds. Results are averaged over 1000 simulations.
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Figure I5: Comparison of rejection probabilities using bootstrap and normal simulations.
Results are shown for § = 71, and each choice of A = AP (M), ASPPB(M), and M /oy = 5.
The average rejection rate for the non-normal simulations are in red and the average rejection
rate for the normal simulations are in blue; the dashed black lines indicate the identified set
bounds. Results are averaged over 1000 simulations.
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Figure 16: Comparison of rejection probabilities using bootstrap and normal simulations for

ASPEM(NTY and ARM(M). Results are shown for § = 7y, M = 1 and 6_y/0; = 1. The
average rejection rate for the non-normal simulations are in red and the average rejection
rate for the normal simulations are in blue; the dashed black lines indicate the identified set
bounds. Results are averaged over 1000 simulations.
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Figure I7: Comparison of rejection probabilities using bootstrap and normal simulations for

ASPEM(NTY and ARM(M). Results are shown for § = 7y, M = 1 and 6_y/0; = 3. The
average rejection rate for the non-normal simulations are in red and the average rejection
rate for the normal simulations are in blue; the dashed black lines indicate the identified set
bounds. Results are averaged over 1000 simulations.
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